IBM Power 710 and 730 Technical Overview and Introduction

An IBM Redpaper Publication
IBM Redbook Form Number: REDP-4983-00
ISBN: 0738451223
ISBN: 9780738451220
Publication Date: 16-May-2013
Last Update Date: 03-Feb-2014
Find Similar Download

Related People

Scott Vetter - Author [+1] [-1]
James Cruickshank - Author

Abstract

This IBM® Redpaper™ publication is a comprehensive guide covering the IBM Power 710 (8231-E1D) and Power 730 (8231-E2D) servers that support IBM AIX®, IBM i, and Linux operating systems. This paper also describes the IBM PowerLinux™ 7R1 (8246-L1D and 8246-L1T) and the PowerLinux 7R2 (8246-L2D and 8246-L2T) servers that support the Linux operating system. The goal of this paper is to introduce the innovative Power 710, Power 730, PowerLinux 7R1, and PowerLinux offerings and their major functions:

  • IBM POWER7+™ processor is available at frequencies of 3.6 GHz, 4.2 GHz, and 4.3 GHz.
  • Larger IBM POWER7+ Level 3 cache provides greater bandwidth, capacity, and reliability.
  • Integrated SAS/SATA controller for HDD, SSD, tape, and DVD supports built-in hardware RAID 0, 1, and 10.
  • New IBM PowerVM® V2.2.2 features, such as 20 LPARs per core.
  • Improved IBM Active Memory™ Expansion technology provides more usable memory than is physically installed in the system.


Professionals who want to acquire a better understanding of IBM Power Systems™ products can benefit from reading this paper.

This paper expands the current set of IBM Power Systems documentation by providing a desktop reference that offers a detailed technical description of the Power 710 and Power 730 systems.

This paper does not replace the latest marketing materials and configuration tools. It is intended as an additional source of information that, together with existing sources, can be used to enhance your knowledge of IBM server solutions.

Language

English

Table of Content

Chapter 1. General description
Chapter 2. Architecture and technical overview
Chapter 3. Virtualization
Chapter 4. Continuous availability and manageability
ibm.com/redbooks
Redpaper
Front cover
IBM Power 710 and 730
Technical Overview and
Introduction
James Cruickshank
Sorin Hanganu
Volker Haug
Stephen Lutz
John T Schmidt
Marco Vallone
Features 8231-E1D, 8231-E2D, 8246 PowerLinux servers
based on POWER7+ processor technology
Describes the support of 20 partitions
per core
Explains 2U rack-mount design
for leading performance


International Technical Support Organization
IBM Power 710 and 730 Technical Overview and
Introduction
May 2013
REDP-4983-00

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.
First Edition (May 2013)
This edition applies to the IBM Power 710 (8231-E1D) and Power 730 (8231-E2D), IBM PowerLinux 7R1
(8246-L1D and 8246-L1T), and PowerLinux 7R2 (8246-L2D and 826-L2T) servers.
Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

© Copyright IBM Corp. 2013. All rights reserved.
iii
Contents
Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x
Now you can become a published author, too! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii
Chapter 1. General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Systems overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 The Power 710 server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 The Power 730 server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 IBM PowerLinux 7R1 server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 IBM PowerLinux 7R2 server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Operating environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Physical package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 System features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Power 710 system features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Power 730 system features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Minimum features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Power supply features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.5 Processor module features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.6 Memory features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Disk and media features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 I/O drawers for Power 710 and Power 730 servers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.1 12X I/O drawer PCIe expansion units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.2 EXP30 Ultra SSD I/O drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.3 EXP24S SFF Gen2-bay drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.4 EXP12S SAS drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6.5 I/O drawers maximums. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 PowerLinux feature codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Build to order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.9 IBM Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.10 Server and virtualization management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.11 System racks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11.1 IBM 7014 Model S25 rack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11.2 IBM 7014 Model T00 rack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11.3 IBM 7014 Model T42 rack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.11.4 Feature code 0555 rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.11.5 Feature code 0551 rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.11.6 Feature code 0553 rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.11.7 The AC power distribution unit and rack content . . . . . . . . . . . . . . . . . . . . . . . . 28
1.11.8 Rack-mounting rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.11.9 Useful rack additions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.11.10 OEM rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv
IBM Power 710 and 730 Technical Overview and Introduction
Chapter 2. Architecture and technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 The IBM POWER7+ processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.1 POWER7+ processor overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.2 POWER7+ processor core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.3 Simultaneous multithreading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1.4 Memory access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.1.5 On-chip L3 cache innovation and Intelligent Cache . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.6 POWER7+ processor and Intelligent Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.1.7 Comparison of the POWER7+, POWER7, and POWER6 processors. . . . . . . . . 48
2.2 POWER7+ processor modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.1 Modules and cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 Power 710 and Power 730 systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Memory subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.1 Registered DIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Memory placement rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.3 Memory bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Capacity on Demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5 System bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Internal I/O subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.1 Slot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.2 System ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 PCI adapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7.1 PCI express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7.2 PCIe adapter form factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.7.3 LAN adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.7.4 Graphics accelerator adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.5 SAS adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.7.6 PCIe RAID and SSD SAS adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.7.7 Fibre Channel adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.7.8 Fibre Channel over Ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7.9 InfiniBand Host Channel adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.10 Asynchronous and USB adapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7.11 Cryptographic coprocessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.8 Internal storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.8.1 RAID support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.8.2 External SAS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8.3 Media bays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.9 External I/O subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.9.1 12X I/O Drawer PCIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.9.2 12X I/O Drawer PCIe configuration and cabling rules. . . . . . . . . . . . . . . . . . . . . . 74
2.10 External disk subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.10.1 EXP30 Ultra SSD I/O drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.10.2 EXP24S SFF Gen2-bay drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.10.3 EXP12S SAS expansion drawer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.10.4 IBM System Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.11 Hardware Management Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.11.1 HMC connectivity to the POWER7+ processor-based systems. . . . . . . . . . . . . 88
2.11.2 High availability HMC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.12 Operating system support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.12.1 IBM AIX operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.12.2 IBM i operating system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.12.3 Linux operating system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.12.4 Virtual I/O Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Contents
v
2.12.5 Java versions that are supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.12.6 Boosting performance and productivity with IBM compilers . . . . . . . . . . . . . . . . 94
2.13 Energy management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.13.1 IBM EnergyScale technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.13.2 Thermal power management device card. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.13.3 Energy consumption estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Chapter 3. Virtualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.1 POWER Hypervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 POWER processor modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3 Active Memory Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4 PowerVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.1 PowerVM editions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4.2 Logical partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4.3 Multiple shared processor pools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.4.4 Virtual I/O Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.5 PowerVM Live Partition Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.4.6 Active Memory Sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.4.7 Active Memory Deduplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.4.8 Dynamic Platform Optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.4.9 Dynamic System Optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.4.10 Operating system support for PowerVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.4.11 Linux support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.5 System Planning Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.6 New PowerVM version 2.2.2 features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Chapter 4. Continuous availability and manageability . . . . . . . . . . . . . . . . . . . . . . . . 139
4.1 Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.1.1 Designed for reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.1.2 Placement of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.1.3 Redundant components and concurrent repair. . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2 Availability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2.1 Partition availability priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.2 General detection and deallocation of failing components . . . . . . . . . . . . . . . . . 142
4.2.3 Memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.4 Cache protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2.5 Special Uncorrectable Error handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2.6 PCI Enhanced Error Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3 Serviceability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.3.1 Detecting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.3.2 Diagnosing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.3.3 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.3.4 Notifying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.3.5 Locating and servicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4 Manageability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.4.1 Service user interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.4.2 IBM Power Systems firmware maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.4.3 Concurrent firmware update improvements with POWER7+ . . . . . . . . . . . . . . . 169
4.4.4 Electronic Services and Electronic Service Agent . . . . . . . . . . . . . . . . . . . . . . . 169
4.5 POWER7+ RAS features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.6 Power-On Reset Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.7 Operating system support for RAS features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

vi
IBM Power 710 and 730 Technical Overview and Introduction
Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Other publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Online resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Help from IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

© Copyright IBM Corp. 2013. All rights reserved.
vii
Notices
This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.
The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.
Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.
Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.
Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.
This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.
COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

viii
IBM Power 710 and 730 Technical Overview and Introduction
Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:
Active Memory™
AIX®
BladeCenter®
DS8000®
Dynamic Infrastructure®
Electronic Service Agent™
EnergyScale™
Focal Point™
IBM®
IBM Flex System™
IBM SmartCloud®
IBM Systems Director Active Energy
Manager™
Micro-Partitioning®
POWER®
POWER Hypervisor™
Power Systems™
Power Systems Software™
POWER6®
POWER6+™
POWER7®
POWER7 Systems™
POWER7+™
PowerHA®
PowerLinux™
PowerPC®
PowerVM®
pSeries®
PureFlex™
Rational®
Rational Team Concert™
Real-time Compression™
Redbooks®
Redpaper™
Redpapers™
Redbooks (logo) ®
Storwize®
System p®
System Storage®
System x®
System z®
Tivoli®
XIV®
The following terms are trademarks of other companies:
Intel, Intel Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and other countries.
ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet Office,
and is registered in the U.S. Patent and Trademark Office.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
LTO, Ultrium, the LTO Logo and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S.
and other countries.
Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.
Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2013. All rights reserved.
ix
Preface
This IBM® Redpaper™ publication is a comprehensive guide covering the IBM Power 710
(8231-E1D) and Power 730 (8231-E2D) servers that support IBM AIX®, IBM i, and Linux
operating systems. This paper also describes the IBM PowerLinux™ 7R1 (8246-L1D and
8246-L1T) and the PowerLinux 7R2 (8246-L2D and 8246-L2T) servers that support the Linux
operating system. The goal of this paper is to introduce the innovative Power 710, Power 730,
PowerLinux 7R1, and PowerLinux 7R2 offerings and their major functions:
The IBM POWER7+™ processor available at frequencies of 3.6 GHz, 4.2 GHz, and
4.3 GHz.
The larger IBM POWER7+ Level 3 cache provides greater bandwidth, capacity, and
reliability.
The 4-port 10/100/1000 Base-TX Ethernet PCI Express adapter included in the base
configuration and installed in a PCIe Gen2 x4 slot.
The integrated SAS/SATA controller for HDD, SSD, tape, and DVD. This controller
supports built-in hardware RAID 0, 1, and 10.
New IBM PowerVM® V2.2.2 features, such as 20 LPARs per core.
The improved IBM Active Memory™ Expansion technology that provides more usable
memory than is physically installed in the system.
IBM EnergyScale™ technology that provides features such as power trending,
power-saving, capping of power, and thermal measurement.
High-performance SSD drawer.
Professionals who want to acquire a better understanding of IBM Power Systems™ products
can benefit from reading this publication. The intended audience includes these roles:
Clients
Sales and marketing professionals
Technical support professionals
IBM Business Partners
Independent software vendors
This paper complements the available set of IBM Power Systems documentation by providing
a desktop reference that offers a detailed technical description of the Power 710 and
Power 730 systems.
This paper does not replace the latest marketing materials and configuration tools. It is
intended as an additional source of information that, together with existing sources, can be
used to enhance your knowledge of IBM server solutions.

x
IBM Power 710 and 730 Technical Overview and Introduction
Authors
This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Austin Center.
James Cruickshank works on the Power Systems Client Technical Specialist team for IBM in
the UK. He holds an Honors degree in Mathematics from the University of Leeds. James has
over 11 years of experience working with IBM pSeries®, IBM System p®, and Power Systems
products and is a member of the EMEA Power Champions team. James supports customers
in the financial services sector in the UK.
Sorin Hanganu is an Accredited Product Services professional. He has eight years of
experience working on Power Systems and IBM i products. He is an IBM Certified Solution
Expert for IBM Dynamic Infrastructure® and also an IBM Certified Systems Expert for Power
Systems, AIX, PowerVM virtualization, ITIL, and ITSM. Sorin works as a System Services
Representative for Power Systems in Bucharest, Romania.
Volker Haug is an Open Group Certified IT Specialist within IBM Germany, supporting Power
Systems clients and Business Partners as a Client Technical Specialist. He holds a diploma
degree in Business Management from the University of Applied Studies in Stuttgart. His
career includes more than 25 years of experience with Power Systems, AIX, and PowerVM
virtualization; he has written several Power Systems and PowerVM IBM Redbooks®
publications. Volker is an IBM POWER7® Champion and a member of the German Technical
Expert Council, an affiliate of the IBM Academy of Technology.
Stephen Lutz is a Certified Senior Technical Sales Professional for Power Systems, working
for IBM Germany. He holds a degree in Commercial Information Technology from the
University of Applied Science Karlsruhe, Germany. He is POWER7 champion and has 14
years experience in AIX, Linux, virtualization, and Power Systems and its predecessors,
providing pre-sales technical support to clients, Business Partners, and IBM sales
representatives all over Germany. Stephen is also an expert in IBM Systems Director, its
plug-ins, and IBM SmartCloud® Entry with a focus on Power Systems and AIX.
John T Schmidt is an Accredited IT Specialist for IBM and has 12 years of experience with
IBM and Power Systems. He has a degree in Electrical Engineering from the University of
Missouri - Rolla, and an MBA from Washington University in St. Louis. In addition to
contributing to eight other Power Systems IBM Redpapers™ publications, in 2010, he
completed an assignment with the IBM Corporate Service Corps in Hyderabad, India. He is
working in the United States as a pre-sales Field Technical Sales Specialist for Power
Systems in Boston, MA.
Marco Vallone is a Certified IT Specialist at IBM, Italy. He joined IBM in 1989, starting in the
Power Systems production plant (Santa Palomba) as a Product Engineer, and then worked
for the ITS AIX support and delivery service center. For the last eight years of his career, he
has worked as IT Solution Architect in the ITS Solution Design Compentence Center of
Excellence in Rome, where he mainly designs infrastructure solutions on distributed
environments with a special focus on Power System solutions.
The project that produced this publication was managed by:
Scott Vetter
Executive Project Manager, PMP

Preface
xi
Thanks to the following people for their contributions to this project:
Larry L. Amy, Ron Arroyo, Hsien-I Chang, Carlo Costantini, Kirk Dietzman, Gary Elliott,
Michael S. Floyd, James Hermes, Pete Heyrman, John Hilburn, Roberto Huerta de la Torre,
Dan Hurlimann, Roxette Johnson, Sabine Jordan, Kevin Kehne, Robert Lowden, Jia Lei Ma,
Hilary Melville, Hans Mozes, Thoi Nguyen, Mark Olson, Robb Romans, Pat O’Rourke,
Jan Palmer, Velma Pavlasek, Dave Randall, Todd Rosedahl, Jeff Stuecheli, Madeline Vega
IBM
Udo Sachs
SVA Germany
Tamikia Barrow
International Technical Support Organization, Austin Center
Now you can become a published author, too!
Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.
Find out more about the residency program, browse the residency index, and apply online at:
ibm.com/redbooks/residencies.html
Comments welcome
Your comments are important to us!
We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:
Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
Send your comments in an email to:
redbooks@us.ibm.com
Mail your comments to:
IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xii
IBM Power 710 and 730 Technical Overview and Introduction
Stay connected to IBM Redbooks
Find us on Facebook:
http://www.facebook.com/IBMRedbooks
Follow us on Twitter:
http://twitter.com/ibmredbooks
Look for us on LinkedIn:
http://www.linkedin.com/groups?home=&gid=2130806
Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
Stay current on recent Redbooks publications with RSS Feeds:
http://www.redbooks.ibm.com/rss.html

© Copyright IBM Corp. 2013. All rights reserved.
1
Chapter 1.
General description
The IBM Power 710 (8231-E1D) and IBM Power 730 servers (8231-E2D) use the latest
POWER7+ processor technology that is designed to deliver unprecedented performance,
scalability, reliability, and manageability for demanding commercial workloads.
The high data transfer rates that are offered by the Peripheral Component Interconnect
Express (PCIe) Gen2 slots can allow higher I/O performance or consolidation of the I/O
demands on to fewer adapters running at higher rates. The result is better system
performance at a lower cost when I/O demands are high.
The Power 710 server is a high-performance, energy-efficient, reliable, and secure
infrastructure and application server in a dense form factor. It contains innovative
workload-optimizing technologies that maximize performance, based on client computing
needs and intelligent energy features that help maximize performance and optimize
energy-efficiency. The result is one of the most cost-efficient solutions for AIX, IBM i, and
Linux deployments.
The IBM Power 730 server delivers the outstanding performance of the POWER7+ processor
in a dense, rack-optimized form factor and is ideal for running multiple application and
infrastructure workloads in a virtualized environment. You can take advantage of the
Power 730 server’s scalability and capacity by using the IBM industrial strength PowerVM
technology to fully employ the server’s capability.
1

2
IBM Power 710 and 730 Technical Overview and Introduction
1.1 Systems overview
The following sections provide detailed information about the Power 710 and
Power 730 systems.
1.1.1 The Power 710 server
The IBM Power 710 server is a 2U rack-mount server with one processor socket, offering
4-core 3.6 GHz, 6-core 4.2 GHz, and 8-core 4.2-GHz configurations. The POWER7+
processor chips in this server are 64-bit, available as 4-core, 6-core, and 8-core modules with
10 MB of L3 cache per core and 256 KB of L2 cache per core.
The Power 710 server supports a maximum of eight DDR3 DIMM slots, with four DIMM slots
included in the base configuration, and four DIMM slots available with an optional memory
riser card. This configuration allows for a maximum system memory of 256 GB.
The POWER7+ chip includes a hardware accelerator for Active Memory Expansion. This
accelerator provides 25% higher levels of memory expansion than available with POWER7
chips. While IBM POWER7 Systems™ offer up to 100% memory expansion, which can
effectively double the server's maximum memory, POWER7+ servers offer up to 125%
memory expansion for AIX partitions. Thus a system memory maximum of 256 GB can
effectively become more than 512 GB effective memory capacity.
The Power 710 server offers three storage backplane options. The first supports three SFF
SAS HDDs or SSDs, a SATA DVD, and a half-high tape drive. The second supports six
SFF SAS HDDs or SSDs and a SATA DVD. These choices both provide an integrated SAS
controller offering RAID 0, 1, and 10 support. The third option supports six SFF SAS HDDs or
SSDs, a SATA DVD, and adds support for Dual Write Cache RAID 5 or 6, and an external
SAS port. HDDs and SSDs are hot-swap and front accessible with each of the alternatives.
The Power 710 includes five PCI Express (PCIe) Gen2 low profile (LP) slots for installing
adapters in the system. The system also includes a PCIe x4 Gen2 Low Profile expansion slot
that contains a 4-Port 10/100/1000 Base-TX Ethernet PCI Express Gen2 adapter.
Figure 1-1 shows the Power 710 server that contains six SFF disk drives and a DVD drive.
Figure 1-1 IBM Power 710 server
Remember: The Integrated Virtual Ethernet (IVE) adapter is not available for the
Power 710.

Chapter 1. General description
3
1.1.2 The Power 730 server
The IBM Power 730 server is a 2U rack-mount server with two processor sockets that offers
8-core 4.3 GHz, 12-core 4.2 GHz, and 16-core 3.6 GHz and 4.2 GHz configurations. The
POWER7+ processor chips in this server are 64-bit, available as 4-core, 6-core, and 8-core
modules with 10 MB of L3 cache per core and 256 KB of L2 cache per core. The new
Power 730 also provides expanded I/O capabilities that use the high-performance Gen2 PCIe
interfaces, and includes the capability of additional I/O using the 12x PCIe I/O expansion
drawers.
The Power 730 server supports a maximum of 16 DDR3 DIMM slots, with four DIMM slots
included in the base configuration. A maximum of three additional memory riser cards, each
containing four DIMM slots, allowing a maximum system memory of 512 GB.
The POWER7+ chip includes a hardware accelerator for Active Memory Expansion. This
accelerator provides 25% higher levels of memory expansion than available with POWER7
chips. While POWER7 Systems offer up to 100% memory expansion, which can effectively
double the server's maximum memory, POWER7+ servers offer up to 125% memory
expansion for AIX partitions. Thus a system memory maximum of 512 GB can effectively
become more than 1024 GB effective memory capacity.
The Power 730 server offers three storage backplane options. The first supports three SFF
SAS hard disk drives (HDDs) or solid-state drives (SSDs), a SATA DVD, and a half-high tape
drive. The second supports six SFF SAS HDDs or SSDs and a SATA DVD. These choices
both provide an integrated SAS controller, offering RAID 0, 1, and 10 support. The third
option supports six SFF SAS HDDs or SSDs, a SATA DVD, and adds support for Dual Write
Cache RAID 5, 6, and an external SAS port. HDDs and SSDs are hot-swap and front
accessible with each of the alternatives.
The Power 730 includes five PCI Express (PCIe) Gen2 low profile (LP) slots for installing
adapters in the system. The system also includes a PCIe x4 Gen2 low profile expansion slot
that contains a 4-Port 10/100/1000 Base-TX Ethernet PCI Express adapter.
Figure 1-2 shows the Power 730 server that contains three SFF disk drives, a DVD drive, and
a tape drive.
Figure 1-2 IBM Power 730
Remember: The Integrated Virtual Ethernet (IVE) adapter is not available for the
Power 730.

4
IBM Power 710 and 730 Technical Overview and Introduction
1.1.3 IBM PowerLinux 7R1 server
The IBM PowerLinux 7R1 (8246-L1D and 8246-L1T) server delivers the outstanding
performance of the IBM POWER7+ processor in a dense, highly efficient 2U rack-optimized
form factor for Linux clients. It is ideal for running multiple Linux infrastructure and application
workloads, and with PowerVM virtualization, can be more economical than traditional Linux
servers.
Take advantage of the scalability and capacity of IBM PowerLinux 7R1 by using the
feature-rich PowerVM virtualization technology from IBM to fully use the server's capacity and
deploy virtual partitions faster. You can move workloads as needed across PowerLinux and
Power Systems servers with Live Partition Mobility.
The IBM PowerLinux 7R1 server is a Linux only 2U rack-mount server with one processor
socket offering 4-core 3.6 GHz, 6-core 4.2 GHz, and 8-core 4.2 GHz configurations. The new
PowerLinux 7R1(8246-L1T only) server also delivers expanded storage capabilities by using
high-performance Gen2 PCIe interfaces and more disk drives by using the EXP24S small
form factor (SFF) Gen2 bay drawer.
The PowerLinux 7R1 server supports a maximum of eight DDR3 DIMM slots, with four DIMM
slots included in the base configuration and four more slots available with one optional
memory riser card, allowing for a maximum system memory of 256 GB.
Supported memory features (two memory DIMMs per feature) are 8 GB, 16 GB, 32 GB, and
64 GB running at speeds of 1066 MHz. PowerVM now features Active Memory Sharing, the
technology you can use to intelligently exchange memory between running partitions for
increased optimization of physical memory resources. Active Memory Sharing enables the
sharing of a pool of physical memory among logical partitions (LPARs) on a single server,
helping to increase memory utilization and drive down system costs.
The IBM PowerLinux 7R1 server offers three storage backplane options. The first supports
three SFF SAS HDDs or SSDs, a SATA DVD, and a half- high tape drive. The second
supports six SFF SAS HDDs or SSDs and a SATA DVD. These two choices both provide an
integrated SAS controller, offering RAID 0, 1, and 10 support. The third supports six SFF SAS
HDDs or SSDs and a SATA DVD, and adds support for dual write cache RAID 5, RAID 6, and
an external SAS port. HDDs and SSDs are hot-swap and front-accessible with each of the
three alternatives.
Other integrated features include the following items:
Five PCIe x8 Gen2 low profile expansion slots.
PCIe2 LP 4-Port 1 Gb Ethernet adapter.
Service processor.
Integrated SAS and SATA controller for HDD, SSD, tape, and DVD in the system unit,
supporting RAID 0, 1, and 10; RAID 5 and RAID 6 also available.
EnergyScale technology.
Two system ports, three USB ports, and two HMC ports.
One 1925 watt AC power supply is required. A second power supply is available for
redundant power.
Redundant and hot-swap cooling.
The PowerLinux system is specifically designed for emerging workloads that are proven ideal
for a virtualized scale-out, Linux server environment.

Chapter 1. General description
5
The PowerLinux 7R1 server benefits from POWER7+ performance, Intelligent Threads
technology, and high memory and I/O bandwidth. These workloads realize more
performance, more efficient virtualization, unique workload optimizing features, and
industry-leading reliability, availability, and scalability at prices comparable with traditional
Linux servers.
The PowerLinux 7R1 is based on the Power 710 server. The firmware on the PowerLinux 7R1
is modified to allow only Virtual I/O Server (VIOS) and Linux operating systems to run in
LPARs. Most features of the Power 710 as described in this paper also apply to the
PowerLinux 7R1 even when the PowerLinux 7R1 is not mentioned explicitly. Where
differences exist between the Power 710 and Power 7R1, this paper highlights them.
Figure 1-3 shows a PowerLinux 7R1 server containing three SFF disk drives, a DVD drive,
and a tape drive.
Figure 1-3 IBM PowerLinux 7R1
1.1.4 IBM PowerLinux 7R2 server
The IBM PowerLinux 7R2 (8246-L2D and 8246-L2T) server delivers the outstanding
performance of the IBM POWER7+ processor in a dense, highly efficient 2U rack-optimized
form factor for Linux clients. It is ideal for running multiple Linux infrastructure and application
workloads, virtualized with PowerVM, more economically than traditional Linux servers. Take
advantage of the scalability and capacity of the IBM PowerLinux 7R2 with the IBM feature-rich
PowerVM virtualization technology to fully use the server’s capacity and deploy virtual
partitions faster. You can move workloads, as needed, across PowerLinux and Power
Systems servers with Live Partition Mobility.
The PowerLinux 7R2 server is a Linux-only 2U rack-mount server with two processor sockets,
offering 16-core 3.6 GHz and 4.2 GHz POWER7+ configurations. The new PowerLinux 7R2
(8246-L2T only) server also provides expanded I/O capabilities with the high-performance
Gen2 PCIe interfaces, and includes the capability of additional I/O that use the 12x PCIe I/O
expansion drawers.
The PowerLinux 7R2 server supports a maximum of 16 DDR3 DIMM slots, with four DIMM
slots included in the base configuration, and 12 DIMM slots available with three optional
memory riser cards, allowing for a maximum system memory of 512 GB.
L1D and L1T differences: The 8246-L1T supports connection to external disk drawers.
The 8246-L1D does not offer connection to external I/O drawers.

6
IBM Power 710 and 730 Technical Overview and Introduction
Supported memory features (two memory DIMMs per feature) are 8 GB, 16 GB, 32 GB, and
64 GB, and run speeds of 1066 MHz. Also, PowerVM now features Active Memory Sharing,
the technology that you can use to intelligently exchange memory between running partitions
for increased optimization of physical memory resources. Active Memory Sharing enables the
sharing of a pool of physical memory among logical partitions (LPARs) on a single server,
helping to increase memory utilization and drive down system costs.
The PowerLinux 7R2 server offers three storage backplane options. The first supports three
SFF SAS HDDs or SSDs, a SATA DVD, and a half-high tape drive. The second supports six
SFF SAS HDDs or SSDs and a SATA DVD. These two choices both provide an integrated
SAS controller, offering RAID 0, 1, and 10 support. The third supports six SFF SAS HDDs or
SSDs, and a SATA DVD, and adds support for Dual Write Cache RAID 5, RAID 6, and an
external SAS port. HDDs and SSDs are hot-swap and front accessible with each of the three
alternatives.
Other integrated features include the following items:
Five PCIe x8 Gen2 low profile expansion slots.
PCIe2 LP 4-Port 1 Gb Ethernet adapter.
Two GX++ slots for 12X I/O loop.
Service processor.
Integrated SAS and SATA controller for HDD, SSD, tape, and DVD in the system unit,
supporting RAID 0, 1, and 10. RAID 5 and RAID 6 are available.
EnergyScale technology.
Two system ports, three USB ports, and two HMC ports.
Redundant and hot-swap power.
Redundant and hot-swap cooling.
The PowerLinux system is specifically designed for emerging workloads that are proven ideal
for a virtualized scale-out, Linux server environment. The PowerLinux 7R2 server benefits
from POWER7+ performance, Intelligent Threads technology, and high memory and I/O
bandwidth. These workloads benefit from POWER7+ processor performance, virtualization
efficiencies, unique workload optimizing features, and industry-leading reliability, availability,
and scalability at prices comparable with traditional Linux servers.
The PowerLinux 7R2 is based on the Power 730 server. The firmware on the PowerLinux 7R2
is modified to allow only VIOS and Linux operating systems to run in LPARs. Most features of
the Power 730 as described in this paper also apply to the PowerLinux 7R2, even when the
PowerLinux 7R2 is not mentioned explicitly. Where differences exist between the Power 730
and Power 7R2, this paper attempts to highlight them.
L2D and L2T differences: The 8246-L2T supports connection to external I/O drawers.
The 8246-L2D does not offer connection to external I/O drawers.

Chapter 1. General description
7
Figure 1-4 shows the IBM PowerLinux 7R2 system that contains six SFF drives and a DVD
drive.
Figure 1-4 IBM PowerLinux 7R2
1.2 Operating environment
Table 1-1 lists the operating environment specifications for the servers.
Table 1-1 Operating environment for Power 710 and Power 730
Power 710 and Power 730 operating environment
Description
Operating
Non-operating
Power 710
Power 730
Power 710
Power 730
Temperature 5 - 40
a
degrees C
(41 - 104 degrees F)
Recommended: 18 to 27 degrees C
(64 to 80 degrees F)
a. Heavy workloads may see some performance degradation above 35C if internal temperatures
trigger a CPU clock reduction.
5 - 45 degrees C
(41 - 113 degrees F)
Relative humidity 8 - 80% 8 - 80%
Maximum dew point 28 degrees C (84 degrees F) N/A
Operating voltage 100 - 127 VAC or
200 - 208 VAC or
200 - 240 VAC
N/A
Operating frequency 50 or 60 Hz N/A
Power consumption 925 Watts
maximum
1,368 Watts
maximum
N/A
Power source loading 0.944 kVA
maximum
1.396 kVA
maximum
N/A
Thermal output 3156 BTU/hour
maximum
4668 BTU/hour
maximum
N/A
Maximum altitude 3,050 m
(10,000 ft)
N/A

8
IBM Power 710 and 730 Technical Overview and Introduction
1.3 Physical package
Table 1-2 shows the physical dimensions of the Power 710 and Power 730 chassis. Both
servers are available only in a rack-mounted form factor. Each takes 2U (2 EIA units) of
rack space.
Table 1-2 Physical dimensions
Figure 1-5 shows the rear view of a Power 730 system.
Figure 1-5 Rear view of a Power 730 system
1.4 System features
The system chassis contains one processor module (Power 710) or two processor modules
(Power 730). Each POWER7+ processor module is either 4-core, 6-core, or 8-core. Each of
the POWER7+ processors in the server has a 64-bit architecture, up to 2 MB of L2 cache
(256 KB per core), and up to 80 MB of L3 cache (10 MB per core).
Tip: The maximum measured value is expected from a fully populated server under an
intensive workload. The maximum measured value also accounts for component tolerance
and operating conditions that are not ideal. Power consumption and heat load vary greatly
by server configuration and utilization. Use the IBM Systems Energy Estimator to obtain a
heat output estimate based on a specific configuration, available at the following website:
http://www-912.ibm.com/see/EnergyEstimator
Dimension
Power 710 (8231-E1D)
Power 730 (8231-E2D)
Width 440 mm (19.0 in) 440 mm (19.0 in)
Depth 706 mm (27.8 in) 706 mm (27.8 in)
Height 89 mm (3.5 in) 89 mm (3.5 in)
Weight (maximum configuration) 28.2 kg (62 lbs) 29.5 kg (62 lbs)
GX++ Slot 1
PCIe x8 Slots
External
SAS Port
Power
Supplies
System
Ports
HMC
Ports
USB
Ports
1 Gb Ethernet
or
GX++ Slot 2

Chapter 1. General description
9
1.4.1 Power 710 system features
This summary describes the standard features of the Power 710:
Rack-mount (2U) chassis
Single processor module:
– 4-core 3.6 GHz processor module
– 6-core 4.2 GHz processor module
– 8-core 4.2 GHz processor module
Up to 256 GB of 1066 MHz DDR3 ECC memory
Choice of three disk and media backplanes:
– Six 2.5-inch SAS HDDs or SSDs and one DVD bay, and an integrated SAS controller,
offering RAID 0, 1, and 10 support
– Six 2.5-inch SAS HDDs or SSDs, an SATA DVD, and adds support for Dual Write
Cache RAID 5, 6, and an external SAS port
– Three 2.5-inch HDD/SSD/Media backplane with one tape drive bay and one DVD bay,
an integrated SAS controller, offering RAID 0, 1, and 10 support
A PCIe x4 Gen2 Low Profile expansion slot containing a 4-Port 10/100/1000 Base-TX
Ethernet PCI Express adapter
Five PCIe Gen2 x8 low profile slots
One GX++ slot
Integrated features:
– Service processor
– EnergyScale technology
– Hot-swap and redundant cooling fans
– Three USB ports
– Two system ports
– Two HMC ports
Optional redundant, 1925 Watt AC hot-swap power supplies
1.4.2 Power 730 system features
This summary describes the standard features of the Power 730:
Rack-mount (2U) chassis
Two processor modules:
– 8-core configuration using two 4-core 4.3 GHz processor modules
– 12-core configuration using two 6-core 4.2 GHz processor modules
– 16-core configuration using two 8-core 3.6 GHz processor modules
– 16-core configuration using two 8-core 4.2 GHz processor modules
Up to 512 GB of 1066 MHz DDR3 ECC memory
Choice of three disk/media backplanes:
– Six 2.5-inch SAS HDDs or SSDs and one DVD bay, and an integrated SAS controller,
offering RAID 0, 1, and 10 support
– Six 2.5-inch SAS HDDs or SSDs, an SATA DVD, and adds support for Dual Write
Cache RAID 5, 6, and an external SAS port

10
IBM Power 710 and 730 Technical Overview and Introduction
– Three 2.5-inch HDD/SSD/Media backplane with one tape drive bay and one DVD bay,
and an integrated SAS controller, offering RAID 0, 1, and 10 support
A PCIe x4 Gen2 Low Profile expansion slot with either a 4-Port 10/100/1000 Base-TX
Ethernet PCI Express adapter or a GX++ Dual-Port 12x Channel Attach adapter
Five PCIe Gen2 x8 low profile slots
Two GX++ slots
Integrated features:
– Service processor
– EnergyScale technology
– Hot-swap and redundant cooling fans
– Three USB ports
– Two system ports
– Two HMC ports
Two redundant power supplies, 1925 Watt AC, hot-swap
1.4.3 Minimum features
Each system has a minimum feature set to be a valid configuration.
The minimum Power 710 initial order must include a processor module, processor activations,
memory, one HDD/SSD, a storage backplane, a power supply and power cord, an operating
system indicator, a chassis indicator, and a language-group specify.
The minimum Power 730 initial order must include two processor modules, processor
activations, memory, one HDD/SSD, a storage backplane, two power supplies and power
cords, an operating system indicator, a chassis indicator, and a language group specify.
If IBM i is the primary operating system (FC 2145), the initial order must also include one
additional HDD or SSD, mirrored system disk-level specify code, and a system console
indicator. A DVD is defaulted on every order but can be deselected. A DVD-ROM or
DVD-RAM must be accessible by the system.
1.4.4 Power supply features
One 1925 watt AC power supply (FC 5532) is required for the Power 710. A second power
supply is optional. Two 1925 watt AC power supplies (FC 5532) are required for the
Power 730.The second power supply provides redundant power for enhanced system
availability. To provide full redundancy, the two power supplies must be connected to separate
power sources.
The server will continue to function with one working power supply. A failed power supply can
be hot-swapped but must remain in the system until the replacement power supply is
available for exchange.
PowerLinux 7R2: The PowerLinux 7R2 only supports 16-core configurations. The 8-core
and 12-core configurations are not supported.
Boot from SAN option: If AIX, IBM i, or Linux is the primary operating system, no internal
HDD or SSD is required if feature SAN Load Source Specify (Boot from SAN), FC 0837, is
selected. A Fibre Channel or FCoE adapter must be ordered if FC 0837 is selected.

Chapter 1. General description
11
1.4.5 Processor module features
Each processor module in the system houses a single POWER7+ processor chip. The
processor chip has either four cores, six cores, or eight cores. The Power 710 supports one
processor module. The Power 730 supports two processor modules. Both processor modules
in the system must be identical.
The number of installed cores in a Power 710 or Power 730 must be equal to the number of
ordered activation features. Cells marked N/A indicate bulk ordering codes, and Custom Card
Identification Number (CCIN) is not applicable. A blank CCIN cell indicates that CCIN is not
available.
Table 1-3 summarizes the processor features that are available for the Power 710.
Table 1-3 Processor features for the Power 710
The Power 730 requires that two identical processor modules be installed. Table 1-4 lists the
available processor features.
Table 1-4 Processor features for the Power 730
1.4.6 Memory features
In POWER7+ processor-based systems, DDR3 memory is used throughout. The POWER7+
DDR3 memory uses a new memory architecture to provide greater bandwidth and capacity.
This architecture enables operating at a higher data rate for larger memory configurations.
Memory in the systems is installed into memory riser cards. One memory riser card is
included in the base system. The base memory riser card does not appear as a feature code
(FC) in the configurator. One additional memory riser card, FC 5265, can be installed in the
Power 710. Three additional memory riser cards, FC 5265, can be installed in the Power 730.
The FC 5265 is replaced with FC EL0A on PowerLinux systems. Each memory riser card
provides four DDR3 DIMM slots. DIMMs are available in capacities of 4 GB, 8 GB, 16 GB, and
32 GB at 1066 MHz and are installed in pairs.
Feature code
Processor module description
EPCE 4-core 3.6 GHz POWER7+ processor module
EPCG 6-core 4.2 GHz POWER7+ processor module
EPCJ 8-core 4.2 GHz POWER7+ processor module
Feature code
Processor module description
EPCF 4-core 4.3 GHz POWER7+ processor module
EPCG 6-core 4.2 GHz POWER7+ processor module
EPCH 8-core 3.6 GHz POWER7+ processor module
EPCJ 8-core 4.2 GHz POWER7+ processor module

12
IBM Power 710 and 730 Technical Overview and Introduction
Table 1-5 lists memory features that are available on the Power 710 and Power 730 systems.
Table 1-5 Summary of memory features
Generally, the best approach is for memory to be installed evenly across all memory riser
cards in the system. Balancing memory across the installed memory riser cards allows
memory access in a consistent manner and typically results in the best possible performance
for your configuration.
1.5 Disk and media features
The Power 710 and Power 730 systems feature an integrated SAS controller, offering
RAID 0,1, and 10 support with three storage backplane options:
FC EJ0D supports six SFF disk units, either HDD or SSD, and an SATA DVD. There is no
support for split backplane and for RAID 5 or 6.
FC EJ0E supports three small form-factor (SFF) disk units, either HDD or SSD, an SATA
DVD, and a tape. There is no support for split backplane and for RAID 5 or 6.
FC EJ0F supports six SFF disk units, either HDD or SSD, an SATA DVD, and an external
SAS port. RAID 5 and 6 are supported.
Table 1-6 shows the available disk drive feature codes that can be installed in the Power 710.
Table 1-6 Disk drive feature code description
Feature code
Feature capacity
Access rate
DIMMs
EM08 8 GB 1066 MHz 2 x 4 GB DIMMs
EM4B 16 GB 1066 MHz 2 x 8 GB DIMMs
EM4C 32 GB 1066 MHz 2 x 16 GB DIMMs
EM4D 64 GB 1066 MHz 2 x 32 GB DIMMs
Remember: The memory cards operate at lower voltage to save energy. Therefore, they
cannot be interchanged with the 8 GB and 16 GB memory features that are used within the
8231-E2B model.
Feature
code
CCIN
Description
OS support
1751 900 GB 10K RPM SAS SFF Disk Drive (AIX, Linux) AIX, Linux
1752 900 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
1775 58B3 177 GB SFF-1 SSD with eMLC for AIX, Linux AIX, Linux
1790 600 GB 10K RPM SAS SFF Disk Drive (AIX, Linux) AIX, Linux
1880 169C 300 GB 15K RPM SAS SFF Disk Drive (AIX, Linux) AIX, Linux
1885 300 GB 10K RPM SFF SAS Disk Drive AIX, Linux
1886 146 GB 15K RPM SFF SAS Disk Drive (AIX, Linux) AIX, Linux
1917 146 GB 15K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
1925 300 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux

Chapter 1. General description
13
Table 1-7 shows the available disk drive feature codes that can be installed in the Power 730.
Table 1-7 Disk drive feature code description
1953 300 GB 15K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
1964 600 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
ES02 58BB 387 GB 1.8" SAS SSD for AIX, Linux with eMLC AIX, Linux
ES0A 58B8 387 GB SFF-1 SSD for AIX, Linux with eMLC AIX, Linux
ES0C 58B9 387 GB SFF-2 SSD for AIX, Linux with eMLC AIX, Linux
ESR2 N/A Six FC ES02 387 GB 1.8" SAS SSD for AIX, Linux with eMLC AIX, Linux
ESRA N/A Four FC ES0A 387 GB SFF-1 SSD for AIX, Linux with eMLC AIX, Linux
ESRC N/A Four FC ES0C 387 GB SFF-2 SSD for AIX, Linux with eMLC AIX, Linux
1737 19A4 856 GB 10K RPM SAS SFF Disk Drive (IBM i) IBMi
1738 19B4 856 GB 10K RPM SAS SFF-2 Disk Drive (IBM i) IBMi
1787 58B3 177 GB SFF-1 SSD with eMLC (IBM i) IBMi
1879 19A1 283 GB 15K RPM SAS SFF Disk Drive (IBM i) IBMi
1888 198C 139 GB 15K RPM SFF SAS Disk Drive (IBM i) IBMi
1911 198D 283 GB 10K RPM SFF SAS Disk Drive (IBM i) IBMi
1916 19A3 571 GB 10K RPM SAS SFF Disk Drive (IBM i) IBMi
ES0B 58B8 387 GB SFF-1 SSD for IBM i with eMLC IBMi
ES0D 58B9 387 GB SFF-2 SSD for IBM i with eMLC IBMi
ESRB N/A Four FC ES0B 387 GB SFF-1 SSD for IBM i with eMLC IBMi
ESRD N/A Four FC ES0D 387 GB SFF-2 SSD for IBM i with eMLC IBMi
Feature
code
CCIN
Description
OS support
1751 900 GB 10K RPM SAS SFF Disk Drive (AIX, Linux) AIX, Linux
1752 900 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
1775 58B3 177 GB SFF-1 SSD with eMLC (AIX, Linux) AIX, Linux
1790 600 GB 10K RPM SAS SFF Disk Drive (AIX, Linux) AIX, Linux
1793 58B4 177 GB SFF-2 SSD with eMLC (AIX, Linux) AIX, Linux
1866 N/A Quantity 150 of FC 1917 AIX, Linux
1880 169C 300 GB 15K RPM SAS SFF Disk Drive (AIX, Linux) AIX, Linux
1885 300 GB 10K RPM SFF SAS Disk Drive AIX, Linux
1886 146 GB 15K RPM SFF SAS Disk Drive (AIX, Linux) AIX, Linux
1887 N/A Quantity 150 of FC 1793 AIX, Linux
Feature
code
CCIN
Description
OS support

14
IBM Power 710 and 730 Technical Overview and Introduction
1917 146 GB 15K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
1925 300 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
1953 300 GB 15K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
1964 600 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux) AIX, Linux
EQ0C N/A Quantity of 150 FC ES0C AIX, Linux
EQ52 N/A Quantity 150 of FC 1752 (900 GB SFF-2 disk) AIX, Linux
ES02 58BB 387 GB 1.8" SAS SSD for AIX, Linux with eMLC AIX, Linux
ES0A 58B8 387 GB SFF-1 SSD for AIX, Linux with eMLC AIX, Linux
ES0C 58B9 387 GB SFF-2 SSD for AIX, Linux with eMLC AIX, Linux
ESR2 N/A Six FC ES02 387 GB 1.8" SAS SSD for AIX, Linux with eMLC AIX, Linux
ESRA N/A Four FC ES0A 387 GB SFF-1 SSD for AIX, Linux with eMLC AIX, Linux
ESRC N/A Four FC ES0C 387 GB SFF-2 SSD for AIX, Linux with eMLC AIX, Linux
1737 19A4 856 GB 10K RPM SAS SFF Disk Drive (IBM i) IBM i
1738 19B4 856 GB 10K RPM SAS SFF-2 Disk Drive (IBM i) IBM i
1787 58B3 177 GB SFF-1 SSD with eMLC (IBM i) IBM i
1794 58B4 177 GB SFF-2 SSD with eMLC (IBM i) IBM i
1879 19A1 283 GB 15K RPM SAS SFF Disk Drive (IBM i) IBM i
1888 198C 139 GB 15K RPM SFF SAS Disk Drive (IBM i) IBM i
1911 198D 283 GB 10K RPM SFF SAS Disk Drive (IBM i) IBM i
1916 19A3 571 GB 10K RPM SAS SFF Disk Drive (IBM i) IBM i
1947 19B0 139 GB 15K RPM SAS SFF-2 Disk Drive (IBM i) IBM i
1948 19B1 283 GB 15K RPM SAS SFF-2 Disk Drive (IBM i) IBM i
1956 19B7 283 GB 10K RPM SAS SFF-2 Disk Drive (IBM i) IBM i
1958 N/A Quantity 150 of FC 1794 IBM i
1962 19B3 571 GB 10K RPM SAS SFF-2 Disk Drive (IBM i) IBM i
EQ0D N/A Quantity of 150 FC ES0D IBM i
ES04 387 GB 1.8" SAS SSD for IBM i with eMLC IBM i
ES0B 58B8 387 GB SFF-1 SSD for IBM i with eMLC IBM i
ES0D 58B9 387 GB SFF-2 SSD for IBM i with eMLC IBM i
ESR4 N/A Six FC ES04 387 GB 1.8" SAS SSD for IBM i with eMLC IBM i
ESRB N/A Four FC ES0B 387 GB SFF-1 SSD for IBM i with eMLC IBM i
ESRD N/A Four FC ES0D 387 GB SFF-2 SSD for IBM i with eMLC IBM i
Feature
code
CCIN
Description
OS support

Chapter 1. General description
15
If you need more disks than are available with the internal disk bays, you can attach additional
external disk subsystems. For more information about the available external disk subsystems,
see 2.10, “External disk subsystems” on page 78.
SCSI disks are not supported in the Power 710 and Power 730 disk bays. Also, because no
PCIe LP SCSI adapter is available, you cannot attach existing SCSI disk subsystems.
The Power 710 and Power 730 have a slim media bay that can contain an optional DVD-RAM
(FC 5762). If FC EJ0E is selected for the storage backplane, a tape bay is available that can
contain a tape drive or removable disk drive.
Table 1-8 shows the available media device feature codes for Power 710 and Power 730.
Table 1-8 Media device feature code description for Power 710 and 730
For more information about the internal disk features, see 2.8, “Internal storage” on page 68.
Tip: Be aware of the following considerations for SAS bay-based SSDs (FC 1775,
FC 1787, FC 1793, FC 1794, FC 1890, and FC 1909):
SFF features ES0A, ES0B, ESRA, ESRB, 1775, and 1787 are supported in the
Power 710 and Power 730 system enclosure.
FC 1793 and FC 1794 are not supported in the Power 710 and Power 730 system
enclosure. They are supported only in the EXP24S SFF Gen2-bay Drawer (FC 5887).
SSDs and disk drives (HDDs) are not allowed to mirror each other.
When an SSD is placed in the FC EJ0F backplane, no EXP12S Expansion Drawer
(FC 5886) or EXP24S SFF Gen2-bay Drawer (FC 5887) is supported to connect to the
external SAS port.
Regarding HDD/SSD data protection, if IBM i (FC 2145) is selected, one of the
following items is required:
– Disk mirroring (default), which requires feature code FC 0040, or FC 0308
– SAN boot (FC 0837)
– RAID, which requires FC EJ0F
– Mixed Data Protection (FC 0296)
Split backplane: The Power 710 and Power 730 models do not support the split
backplane function.
Internal docking station: The Internal Docking Station for Removable Disk Drive
(FC EU23) is supported for AIX and Linux.
Feature code
Description
5762 SATA Slimline DVD-RAM Drive
EU23 RDX USB Internal Docking Station for Removable Disk Cartridge
EU04 RDX USB External Docking Station for Removable Disk Cartridge

16
IBM Power 710 and 730 Technical Overview and Introduction
1.6 I/O drawers for Power 710 and Power 730 servers
The Power 710 and Power 730 servers support the attachment of I/O drawers. The
Power 710 supports disk-only I/O drawers (FC 5886, FC 5887, and FC EDR1), providing
large storage capacity and multiple partition support. The Power 730 supports disk-only I/O
drawers (FC 5886, FC 5887, and FC EDR1), and also two 12X attached I/O drawers
(FC 5802 and FC 5877), providing extensive capability to expand the overall server.
The following I/O drawers are supported on the Power 710 and Power 730 servers:
12X I/O drawer PCIe, SFF disk (FC 5802) Power 730 only
12X I/O drawer PCIe, no disk (FC 5877) Power 730 only
EXP30S holds 1.8-inch SSDs (FC EDR1)
EXP24S holds 2.5-inch SAS disk or SSD (FC 5887)
EXP12S holds 3.5-inch SAS disk or SSD (FC 5886)
FC 5886 is no longer available to order with the Power 710 and Power 730 but is
supported if migrated from another server.
1.6.1 12X I/O drawer PCIe expansion units
The 12X I/O drawer PCIe, SFF disk (FC 5802) and 12X I/O drawer PCIe, no disk (FC 5877)
expansion units are 19-inch, rack-mountable, I/O expansion drawers that are designed to be
attached to the system using 12x double date rate (DDR) cables. FC 5802 and FC 5877 are
packaged as a 4U form factor. The expansion units can accommodate 10 Gen3 blind swap
cassettes. These cassettes can be installed and removed without removing the drawer from
the rack.
The FC 5802 I/O drawer has the following attributes:
18 SAS hot-swap SFF disk bays
10 PCIe based blind swap I/O adapter slots
Redundant hot-swappable power and cooling units
The FC 5877 drawer is the same as FC 5802 except that it does not support any disk bays.
A maximum of two FC 5802 or FC 5877 drawers can be placed on the same 12X loop. The
FC 5877 I/O drawer can be on the same loop as the FC 5802 I/O drawer. An FC 5877 drawer
cannot be upgraded to an FC 5802 drawer.
Tips:
A single FC 5886 or FC 5887 drawer can be cabled to the system enclosure external
SAS port when an FC EJ0F DASD backplane is installed in the Power 710 and
Power 730.
A 3 Gbps YI cable (FC 3687) is used to connect the drawer to the system enclosure
external SAS port.
FC EDR1, FC 5887, and FC 5886 drawers are not available with the 4-core processor
(FC EPCE) on the Power 710.
Power 710 support: The Power 710 does not support connections to the FC 5802 or
FC 5877 I/O drawer.

Chapter 1. General description
17
Figure 1-6 shows the front view of the FC 5802 I/O drawer.
Figure 1-6 Front view of the FC 5802 I/O drawer
1.6.2 EXP30 Ultra SSD I/O drawer
The EXP30 Ultra SSD I/O Drawer (FC EDR1) provides the Power 710 and Power 730 up to
30 solid-state drives (SSD) in only 1U of rack space without any PCIe slots. The drawer
provides up to 480,000 IOPS and up to 11.6 TB of capacity for AIX or Linux clients. Plus up to
48 additional hard disk drives (HDDs) can be directly attached to the Ultra Drawer (still
without using any PCIe slots), providing up to 43.2 TB of additional capacity in only 4U
additional rack space for AIX clients. This ultra-dense SSD option is similar to the Ultra
Drawer (FC 5888), which remains available to B-models and C-models of the Power 710, and
Power 730.
The EXP30 attaches to the Power 710 or Power 730 server with a GX++ adapter, FC EJ0H.
Figure 1-7 show the EXP30 Ultra SSD I/O Drawer.
Figure 1-7 EXP30 Ultra SSD I/O Drawer
1.6.3 EXP24S SFF Gen2-bay drawer
The EXP24S SFF Gen2-bay drawer is an expansion drawer supporting up to 24 2.5-inch
hot-swap SFF SAS HDDs on IBM POWER6®, IBM POWER6+™, POWER7 or, POWER7+
servers in 2U of 19-inch rack space. The EXP24S bays are controlled by SAS adapters or
controllers attached to the I/O drawer by SAS X or Y cables.
Reminder: The previous EXP30 drawer (FC 5888) is not supported on the D-models of
the Power 710 and Power 730 servers.

18
IBM Power 710 and 730 Technical Overview and Introduction
The SFF bays of the EXP24S differ from the SFF bays of the POWER7+ system units or 12X
PCIe I/O drawers (FC 5802). The EXP24S uses Gen2 or SFF-2 SAS drives that physically do
not fit in the Gen1 or SFF-1 bays of the POWER7+ system unit or 12X PCIe I/O Drawers.
The EXP24S includes redundant AC power supplies and two power cords.
Figure 1-8 shows EXP24S SFF drawer.
Figure 1-8 EXP24S SFF drawer
1.6.4 EXP12S SAS drawer
The EXP12S SAS drawer (FC 5886) is a 2 EIA drawer and mounts in a 19-inch rack. The
drawer can hold either SAS disk drives or SSD drives. The EXP12S SAS drawer has
twelve 3.5-inch SAS disk bays with redundant data paths to each bay. The SAS disk drives or
SSD drives contained in the EXP12S are controlled by one or two PCIe SAS adapters that
are connected to the EXP12S by using SAS cables.
The FC 5886 can also be directly attached to the SAS port on the rear of the Power 710 and
Power 730, providing a low-cost disk storage solution. When used this way, the embedded
SAS controllers in the system unit drive the disk drives in EXP12S. A second unit cannot be
cascaded to an FC 5886 attached in this way.
The FC 5886 is no longer orderable with the Power 710 or Power 730 but is supported if
migrated from another system.
Figure 1-9 shows the front view of the EXP12S SAS drawer (FC 5886).
Figure 1-9 EXP12S SAS drawer (FC 5886)

Chapter 1. General description
19
1.6.5 I/O drawers maximums
Depending on the system configuration, the maximum number of I/O drawers that is
supported can vary. Table 1-9 summarizes the maximum number of I/O drawers and external
disk-only I/O drawers that are supported.
Table 1-9 Maximum number of I/O drawers supported and total number of PCI slots
1.7 PowerLinux feature codes
The PowerLinux systems use the same parts as the Power 710 and Power 730 but many
have a different feature codes. Table 1-10 is a cross reference between feature codes in the
two types of machine.
Table 1-10 PowerLinux feature code cross reference
Server
Processor
cards
Max FC 5802
and FC 5877
drawers
Max FC 5886
drawers
Max FC 5887
drawers
Max FC EDR1
drawers
Power 710 1 Not supported 8 4 Half of one
Power 730 2 2 28 14 2
Unsupported: Remember, the 4-core Power 710 does not support I/O drawers.
Feature code:
Power 710 and
Power 730
Feature code:
PowerLinux
Description
1124 EL01 80/160 GB DAT160 SAS Tape Drive (3.5")
1751 EL35 900 GB 10K RPM SAS SFF Disk Drive (AIX, Linux)
1752 EL1R 900 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux)
1790 EL0P 600 GB 10K RPM SAS SFF Disk Drive (AIX, Linux)
1793 EL1K 177 GB SFF-2 SSD w/ eMLC (AIX, Linux)
1818 ELQQ Quantity 150 count of FC 1964
1866 ELQM Quantity 150 count of FC 1917
1869 ELQN Quantity 150 count of FC 1925
1880 EL0Z 300 GB 15K RPM SAS SFF Disk Drive (AIX, Linux)
1885 EL02 300 GB 10K RPM SFF SAS Disk Drive
1886 EL03 146 GB 15K RPM SFF SAS Disk Drive (AIX, Linux)
1887 ELQK Quantity 150 count of FC 1793
1917 EL1M 146 GB 15K RPM SAS SFF-2 Disk Drive (AIX, Linux)
1925 EL1N 300 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux)
1929 ELQP Quantity 150 count of FC 1953
1953 EL1P 300 GB 15K RPM SAS SFF-2 Disk Drive (AIX, Linux)

20
IBM Power 710 and 730 Technical Overview and Introduction
1964 EL1Q 600 GB 10K RPM SAS SFF-2 Disk Drive (AIX, Linux)
3450 EL25 SAS YO Cable 1.5 m - HD 6 Gb Adapter to Enclosure
3451 EL29 SAS YO Cable 3 m - HD 6 Gb Adapter to Enclosure
3452 EL28 SAS YO Cable 6 m - HD 6 Gb Adapter to Enclosure
3453 EL26 SAS YO Cable 10 m - HD 6 Gb Adapter to Enclosure
3454 EL1Z SAS X Cable 3 m - HD 6 Gb 2-Adapter to Enclosure
3455 EL20 SAS X Cable 6 m - HD 6 Gb 2-Adapter to Enclosure
3456 EL1Y SAS X Cable 10 m - HD 6 Gb 2-Adapter to Enclosure
3457 EL24 SAS YO Cable 15 m - HD 3 Gb Adapter to Enclosure
3458 EL1X SAS X Cable 15 m - HD 3 Gb 2-Adapter to Enclosure
3661 EL22 SAS Cable (X) Adapter to SAS Enclosure, Dual Controller/Dual
Path 3 m
3662 EL23 SAS Cable (X) Adapter to SAS Enclosure, Dual Controller/Dual
Path 6 m
3663 EL21 SAS Cable (X) Adapter to SAS Enclosure, Dual Controller/Dual
Path 15 m
3687 EL2L SAS Cable (YI) System to SAS Enclosure, Single
Controller/Dual Path 3 m
3691 EL1T SAS Cable (YO) Adapter to SAS Enclosure, Single
Controller/Dual Path 1.5 m
3692 EL1V SAS Cable (YO) Adapter to SAS Enclosure, Single
Controller/Dual Path 3 m
3693 EL1W SAS Cable (YO) Adapter to SAS Enclosure, Single
Controller/Dual Path 6 m
3694 EL1U SAS Cable (YO) Adapter to SAS Enclosure, Single
Controller/Dual Path 15 M
5260 EL11 PCIe2 LP 4-Port 1 Gb Ethernet Adapter
5265 EL0A, EL0K Memory Riser Card
5273 EL2N PCIe LP 8 Gb 2-Port Fibre Channel Adapter
5276 EL09 PCIe LP 4 Gb 2-Port Fibre Channel Adapter
5278 EL10 PCIe LP 2 x 4-Port SAS Adapter 3 Gb
5284 EL2P PCIe2 LP 2-Port 10 Gb Ethernet Adapter
5802 EL36 12X I/O Drawer PCIe, SFF disk
5877 EL37 12X I/O Drawer PCIe, No Disk
5887 EL1S EXP24S SFF Gen2-bay Drawer
5915 EL2C SAS AA Cable 3 m - HD 6 Gb Adapter to Adapter
Feature code:
Power 710 and
Power 730
Feature code:
PowerLinux
Description

Chapter 1. General description
21
5916 EL2D SAS AA Cable 6 m - HD 6 Gb Adapter to Adapter
5917 EL2B SAS AA Cable 1.5 m - HD 6 Gb Adapter to Adapter
5918 EL2A SAS AA Cable 0.6 m - HD 6 Gb Adapter to Adapter
EC27 EL27 PCIe2 LP 2-Port 10 GbE RoCE SFP+ Adapter
EC29 EL2Z PCIe2 LP 2-Port 10 GbE RoCE SR Adapter
EDR1 EL30 EXP30 Ultra SSD I/O Drawer
EJ0D EL0R, EL0W Storage Backplane: 6 SFF Drives/SATA DVD
EJ0E EL0T, EL0X Storage Backplane: 3 SFF Drives/SATA DVD/HH Tape
EJ0F EL0V, EL0Y Storage Backplane: 6 SFF Drives/SATA DVD/RAID/External
SAS Port
EM08 EL15, EL1F 8 GB (2 x 4 GB) Memory DIMMs, 1066 MHz, 2 Gb DDR3
DRAM
EM4B EL2Q, EL2S 16 GB (2 x 8 GB) Memory DIMMs, 1066 MHz, 4 Gb DDR3
DRAM
EM4C EL2R, EL2T 32 GB (2 x 16GB) Memory DIMMs, 1066 MHz, 4 Gb DDR3
DRAM
EM4D EL2U 64 GB (2 x 32 GB) Memory DIMMs, 1066 MHz, 4 Gb DDR3
DRAM
EN05 EL31 PCIe x8 Cable 1.5 m
EN07 EL32 PCIe x8 Cable 3 m
EN0J EL38 PCIe2 LP 4-Port (10 Gb FCoE & 1 Gb Ethernet) SR & RJ45
EPCE EPLP 4-core 3.6 GHz POWER7+ Processor Module
EPCG EPLQ 6-core 4.2 GHz POWER7+ Processor Module
EPCH EPLJ 8-core 3.6 GHz POWER7+ Processor Module
EPCJ EPLK 8-core 4.2 GHz POWER7+ Processor Module
EPDF EPLR One Processor Activation for Processor Feature FC EPCF
EPDG EPLS One Processor Activation for Processor Feature FC EPCG
EPDH EPLM One Processor Activation for Processor Feature FC EPCH
EPDJ EPLN One Processor Activation for Processor Feature FC EPCJ
EQ0C ELQL Quantity of 150 FC ES0C
EQ52 ELQR Quantity 150 of FC 1752 (900 GB SFF-2 disk)
ES02 EL34 387 GB 1.8-inch SAS SSD for AIX, Linux with eMLC
ES0C EL1L 387 GB SFF-2 SSD for AIX, Linux with eMLC
ESA2 EL2K PCIe2 LP RAID SAS Adapter Dual-Port 6 Gb
Feature code:
Power 710 and
Power 730
Feature code:
PowerLinux
Description

22
IBM Power 710 and 730 Technical Overview and Introduction
1.8 Build to order
You can perform a build-to-order or an
a la carte
configuration by using the IBM configurator
for e-business (e-config), where you specify each configuration feature that you want on the
system. You build on top of the base required features, such as the embedded Integrated
Virtual Ethernet adapter.
Preferably, begin with one of the available starting configurations, such as the IBM Edition.
These solutions are available at initial system order time with a starting configuration that is
ready to run as is.
1.9 IBM Edition
Each IBM Edition is available only as an initial order. If you order a Power 710 or Power 730
Express server, IBM Edition as defined next, you can qualify for half the initial configuration's
processor core activations at no additional charge.
The total memory (based on the number of cores) and the quantity and size of disk, SSD,
Fibre Channel adapters, or Fibre Channel over Ethernet (FCoE) adapters that are included
with the server are the only features that determine whether a customer is entitled to a
processor activation at no additional charge.
With an IBM Edition for a Power 710, processor activations for the processor card options are
as follows:
3.6 GHz 4-core processor module (FC EPCE) with 2 x FC EPDE (chargeable) and
2 x FC EPEE (no-charge)
4.2 GHz 6-core processor module (FC EPCG) with 3 x FC EPDG (chargeable) and
3 x FC EPEG (no-charge)
4.2 GHz 8-core processor module (FC EPCJ) with 4 x FC EPDJ (chargeable) and
4 x FC EPEJ (no-charge)
With an IBM Edition for the Power 730, processor activations for the processor card options
are as follows:
Two 4.3 GHz 4-core processor module (FC EPCF) with 4 x FC EPDF (chargeable) and
4 x FC EPEF (no-charge)
Two 4.2 GHz 6-core processor module (FC EPCG) with 6 x EPDG (chargeable) and
6 x FC EPEG (no-charge)
Two 3.6 GHz 8-core processor module (FC EPCH) with 8 x FC EPDH (chargeable) and
8 x FC EPEH (no-charge)
Two 4.2 GHz 8-core processor module (FC EPCJ) with 8 x FC EPDJ (chargeable) and
8 x FC EPEJ (no-charge)
The Power 730 requires two processor modules.
When you purchase an IBM Edition, you can purchase an AIX, IBM i, or Linux operating
system license, or you can choose to purchase the system with no operating system. The
AIX, IBM i, or Linux operating system is processed by means of a feature code on one of the
following systems:
AIX 6.1, or AIX 7.1
IBM i 6.1.1 or IBM i 7.1
SUSE Linux Enterprise Server or Red Hat Enterprise Linux

Chapter 1. General description
23
If you choose AIX 6.1 or AIX 7.1 for your primary operating system, you can also order
IBM i 6.1.1 or IBM i 7.1 and SUSE Linux Enterprise Server or Red Hat Enterprise Linux.
The converse is true if you choose an IBM i or Linux subscription as your primary operating
system.
These sample configurations can be changed as needed and still qualify for processor
entitlements at no additional charge. However, selection of total memory, HDD, SSD, Fibre
Channel, or FCoE adapter quantities smaller than the totals defined as the minimums
disqualifies the order as an IBM Edition, and the no-charge processor activations are
then removed.
Consider the following minimum definitions for IBM Edition:
For the Power 710, a minimum of 2 GB memory per core is needed to qualify for the IBM
Edition. Various valid memory configurations can meet the minimum requirement.
For the Power 730, a minimum of 4 GB memory per core is needed to qualify for the IBM
Edition. Various valid memory configurations can meet the minimum requirement.
Additionally, a minimum of two HDDs, two SSDs, two Fibre Channel adapters, or two FCoE
adapters is required. You only need to meet one of these disk, SSD, Fibre Channel, or FCoE
criteria. Partial criteria cannot be combined.
Two SAS HDDs: Any capacity drives that are located in the system unit, FC 5886 DASD
drawer, or FC 5887 DASD drawer, or FC 5802 I/O drawer (Power 730 only) qualify.
Two SAS SSDs: Any capacity drives that are located in the system unit, FC EDR1 I/O
drawer, FC 5886 DASD drawer, or FC 5887 DASD drawer or FC 5802 I/O drawer
(Power 730 only) qualify.
Two SSD Modules with eMLC (FC 1995 or FC 1996): Modules that are located in the
system unit with FC 2053 qualify.
Two Fibre Channel PCI Express adapters located in the system unit or FC 5802 or
FC 5877 I/O drawer (Only Power 730 supports I/O drawers).
Two Fibre Channel over Ethernet PCI Express adapters located in the system unit or
FC 5802 or FC 5877 I/O drawer (Only Power 730 supports I/O drawers).
1.10 Server and virtualization management
If you want to implement partitions, a Hardware Management Console (HMC) or the
Integrated Virtualization Manager (IVM) is required to manage the Power 710 and Power 730
servers. In general, multiple IBM POWER6, POWER6+, POWER7, and POWER7+
processor-based servers can be supported by a single HMC.
If an HMC is used to manage the Power 710 and Power 730, the HMC must be a rack-mount
CR3 or later, or deskside C05 or later.
In 2012, IBM announced a new HMC model, machine type 7042-CR7. Hardware features on
the CR7 model include a second disk drive (FC 1998) for RAID 1 data mirroring, and the
option of a redundant power supply. At the time of writing, the latest version of HMC code was
V7R7.7.0 (SP1).
Remember: If you do not use an HMC or IVM, the Power 710 and Power 730 run in full
system partition mode. That means that a single partition owns all the server resources,
and only one operating system can be installed.

24
IBM Power 710 and 730 Technical Overview and Introduction
This code level also includes the new LPAR function support, which allows the HMC to
manage more LPARs per processor core. A core can now be partitioned in up to 20 LPARs
(0.05 of a core).
Several HMC models are supported to manage POWER7+ processor-based systems. The
model 7042-CR7 is the only HMC available for ordering at the time of writing, but you can also
use one of the withdrawn models listed in Table 1-11.
Table 1-11 HMC models that support POWER7+ processor technology-based servers
The IBM POWER7+ processor-based Power 710 and IBM Power 730 servers require HMC
V7R7.7.0 Service Pack 1.
The HMC V7.7.0 (SP1) contains the following support, improvements, and abilities:
Support for managing IBM Power 710 and Power 730
Support for PowerVM functions such as new HMC GUI interface for VIOS installation
Improved transition from IVM to HMC management
Support for 802.1 Qbg on virtual Ethernet adapters
Ability to update the user’s password in Kerberos from the HMC for clients who use remote
HMC
Existing HMC models 7310 can be upgraded to Licensed Machine Code Version 7 to support
environments that can include IBM POWER5, IBM POWER5+, POWER6, POWER6+,
POWER7, and POWER7+ processor-based servers. Licensed Machine Code Version 6
(FC 0961) is not available for 7042 HMCs.
When IBM Systems Director is used to manage an HMC, or if the HMC manages more than
254 partitions, the HMC must have a minimum of 3 GB RAM and must be a rack-mount CR3
model or later or deskside C06 or later.
Type-model
Availability
Description
7310-C05 Withdrawn IBM 7310 Model C05 Desktop Hardware Management Console
7310-C06 Withdrawn IBM 7310 Model C06 Deskside Hardware Management Console
7042-C06 Withdrawn IBM 7042 Model C06 Deskside Hardware Management Console
7042-C07 Withdrawn IBM 7042 Model C07 Deskside Hardware Management Console
7042-C08 Withdrawn IBM 7042 Model C08 Deskside Hardware Management Console
7310-CR3 Withdrawn IBM 7310 Model CR3 Rack-Mounted Hardware Management Console
7042-CR4 Withdrawn IBM 7042 Model CR4 Rack-Mounted Hardware Management Console
7042-CR5 Withdrawn IBM 7042 Model CR5 Rack-Mounted Hardware Management Console
7042-CR6 Withdrawn IBM 7042 Model CR6 Rack mounted Hardware Management Console
7042-CR7 Available IBM 7042 Model CR7 Rack mounted Hardware Management Console
Tip: You can download or order the latest HMC code from the Fix Central website:
http://www.ibm.com/support/fixcentral

Chapter 1. General description
25
1.11 System racks
The Power 710 and Power 730 are designed to mount in the 25U 7014-S25 (FC 0555), 36U
7014-T00 (FC 0551), or the 42U 7014-T42 (FC 0553) rack. These racks are built to the
19-inch EIA standard.
If a system is to be installed in a rack or cabinet that is not IBM, ensure that the rack meets
the requirements described in 1.11.10, “OEM rack” on page 36.
1.11.1 IBM 7014 Model S25 rack
The 1.3 Meter (49-inch) Model S25 rack has the following features:
25 EIA units
Weights
– Base empty rack: 100.2 kg (221 lb.)
– Maximum load limit: 567.5 kg (1250 lb.)
The S25 racks do not have vertical mounting space to accommodate FC 7188 PDUs. All
PDUs that are required for application in these racks must be installed horizontally in the rear
of the rack. Each horizontally mounted PDU occupies 1U of space in the rack, and therefore
reduces the space available for mounting servers and other components.
1.11.2 IBM 7014 Model T00 rack
The 1.8-meter (71-inch) model T00 is compatible with past and present IBM Power Systems
servers. The features of the T00 rack are as follows:
Has 36U (EIA units) of usable space.
Has optional removable side panels.
Has optional side-to-side mounting hardware for joining multiple racks.
Has increased power distribution and weight capacity.
Supports both AC and DC configurations.
Up to four power distribution units (PDUs) can be mounted in the PDU bays (see
Figure 1-11 on page 29), but others can fit inside the rack. See 1.11.7, “The AC power
distribution unit and rack content” on page 28.
Order information: A new Power 710 or Power 730 server can be ordered with the
appropriate 7014 rack model. The racks are available as features of the Power 710 and
Power 730 only when an additional external disk drawer for an existing system (MES
order) is ordered. Use the rack feature code if IBM manufacturing must integrate the newly
ordered external disk drawer in a 19-inch rack before shipping the miscellaneous
equipment specification (MES) order.
Responsibility: The client is responsible for ensuring that the installation of the drawer in
the preferred rack or cabinet results in a configuration that is stable, serviceable, safe, and
compatible with the drawer requirements for power, cooling, cable management, weight,
and rail security.

26
IBM Power 710 and 730 Technical Overview and Introduction
For the T00 rack three door options are available:
– Front Door for 1.8 m Rack (FC 6068)
This feature provides an attractive black full height rack door. The door is steel, with a
perforated flat front surface. The perforation pattern extends from the bottom to the top
of the door to enhance ventilation and provide some visibility into the rack.
– A 1.8 m Rack Acoustic Door (FC 6248)
This feature provides a front and rear rack door designed to reduce acoustic sound
levels in a general business environment.
– A 1.8 m Rack Trim Kit (FC 6263)
If no front door will be used in the rack, this feature provides a decorative trim kit for the
front.
Ruggedized Rack Feature
For enhanced rigidity and stability of the rack, the optional Ruggedized Rack Feature
(FC 6080) provides additional hardware that reinforces the rack and anchors it to the floor.
This hardware is designed primarily for use in locations where earthquakes are a concern.
The feature includes a large steel brace or truss that bolts into the rear of the rack.
It is hinged on the left side so it can swing out of the way for easy access to the rack
drawers when necessary. The Ruggedized Rack Feature also includes hardware for
bolting the rack to a concrete floor or a similar surface, and bolt-in steel filler panels for any
unoccupied spaces in the rack.
Weights are as follows:
– T00 base empty rack: 244 kg (535 lb)
– T00 full rack: 816 kg (1795 lb)
– Maximum weight of drawers is 572 kg (1260 lb)
– Maximum weight of drawers in a zone 4 earthquake environment is 490 kg (1080 lb).
This number equates to 13.6 kg (30 lb) per EIA.
1.11.3 IBM 7014 Model T42 rack
The 2.0-meter (79.3-inch) Model T42 addresses the client requirement for a tall enclosure to
house the maximum amount of equipment in the smallest possible floor space. The following
features are for the model T42 rack (which differ from the model T00):
The T42 rack has 42U (EIA units) of usable space (6U of additional space).
The model T42 supports AC power only.
Weights are as follows:
– T42 base empty rack: 261 kg (575 lb)
– T42 full rack: 930 kg (2045 lb)
OEM front door: This door is also available as an OEM front door (FC 6101).
Important: If additional weight is added to the top of the rack, for example adding
FC 6117, the 490 kg (1080 lb) must be reduced by the weight of the addition. As an
example, FC 6117 weighs approximately 45 kg (100 lb) so the new maximum weight of
drawers that the rack can support in a zone 4 earthquake environment is 445 kg (980 lb).
In the zone 4 earthquake environment, the rack must be configured starting with the
heavier drawers at the bottom of the rack.

Chapter 1. General description
27
The available door options for T42 rack are shown in Figure 1-10.
Figure 1-10 Door options for the T42 rack
The 2.0 m Rack Trim Kit (FC 6272) is used, if no front door is used in the rack.
The Front Door for a 2.0 m Rack (FC 6069) is made of steel, with a perforated flat front
surface. The perforation pattern extends from the bottom to the top of the door to enhance
ventilation and provide some visibility into the rack. This door is non acoustic and has a
depth of about 25 mm (1 in).
The 2.0 m Rack Acoustic Door (FC 6249) consists of a front and rear door to reduce noise
by approximately 6 dB(A). It has a depth of approximately 191 mm (7.5 in).
The High-End Appearance Front Door (FC 6250) provides a front rack door with a
field-installed Power 780 logo indicating that the rack contains a Power 780 system. The
door is not acoustic and has a depth of about 90 mm (3.5 in).
The FC ERG7 provides an attractive black full height rack door. The door is steel, with a
perforated flat front surface. The perforation pattern extends from the bottom to the top of
the door to enhance ventilation and provide some visibility into the rack. The non-acoustic
door has a depth of about 134 mm (5.3 in).
Rear Door Heat Exchanger
To lead away more heat, a special door named the Rear Door Heat Exchanger (FC 6858) is
available. This door replaces the standard rear door on the rack. Copper tubes that are
attached to the rear door circulate chilled water, provided by the customer. The chilled water
removes heat from the exhaust air being blown through the servers and attachments mounted
in the rack. With industry standard quick couplings, the water lines in the door attach to the
customer-supplied secondary water loop.
Trim kit
(no front door)
FC 6272
Plain front door
FC 6069
Acoustic doors
(front and rear)
FC 6249
Optional
front door
FC ERG7
780 logo
front door
FC 6250
OEM front door: This door is also available as an OEM front door (FC 6084).
High end: For the High-End Appearance Front Door (FC 6250), use the High-End
Appearance Side Covers (FC 6238) to make the rack appear as though it is a high-end
server (but in a 19-inch rack format instead of a 24-inch rack).

28
IBM Power 710 and 730 Technical Overview and Introduction
For details about planning for the installation of the IBM Rear Door Heat Exchanger, see the
following website:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/iphad_p5/iphade
xchangeroverview.html
1.11.4 Feature code 0555 rack
The 1.3 Meter Rack (FC 0555) is a 25 EIA unit rack. The rack that is delivered as FC 0555 is
the same rack that is delivered when you order the 7014-S25 rack. The included features
might vary. The FC 0555 is supported, but no longer orderable.
1.11.5 Feature code 0551 rack
The 1.8 Meter Rack (FC 0551) is a 36 EIA unit rack. The rack that is delivered as FC 0551 is
the same rack that is delivered when you order the 7014-T00 rack. The included features
might vary. Certain features that are delivered as part of the 7014-T00 must be ordered
separately with the FC 0551.
1.11.6 Feature code 0553 rack
The 2.0 Meter Rack (FC 0553) is a 42 EIA unit rack. The rack that is delivered as FC 0553 is
the same rack that is delivered when you order the 7014-T42 or B42 rack. The included
features might vary. Certain features that are delivered as part of the 7014-T42 or B42 must
be ordered separately with the FC 0553.
1.11.7 The AC power distribution unit and rack content
For rack models T00 and T42, 12-outlet PDUs are available. These include the AC power
distribution units FC 9188 and FC 7188 and the AC Intelligent PDU+ FC 5889 and FC 7109.
The Intelligent PDU+ (FC 5889 and FC 7109) is identical to FC 9188 and FC 7188 PDUs but
are equipped with one Ethernet port, one console serial port, and one RS232 serial port for
power monitoring.
The PDUs have 12 client-usable IEC 320-C13 outlets. There are six groups of two outlets fed
by six circuit breakers. Each outlet is rated up to 10 amps, but each group of two outlets is fed
from one 15 amp circuit breaker.

Chapter 1. General description
29
Four PDUs can be mounted vertically in the back of the T00 and T42 racks. Figure 1-11
shows placement of the four vertically mounted PDUs. In the rear of the rack, two additional
PDUs can be installed horizontally in the T00 rack and three in the T42 rack. The four vertical
mounting locations will be filled first in the T00 and T42 racks. Mounting PDUs horizontally
consumes 1U per PDU and reduces the space available for other racked components. When
mounting PDUs horizontally, the best approach is to use fillers in the EIA units that are
occupied by these PDUs to facilitate proper air-flow and ventilation in the rack.
Figure 1-11 PDU placement and PDU view
The PDU receives power through a UTG0247 power-line connector. Each PDU requires one
PDU-to-wall power cord. Various power cord features are available for various countries and
applications by varying the PDU-to-wall power cord, which must be ordered separately. Each
power cord provides the unique design characteristics for the specific power requirements. To
match new power requirements and save previous investments, these power cords can be
requested with an initial order of the rack or with a later upgrade of the rack features.
Rack Rear View
4
3
2
1
Circuit breaker reset
Status LED

30
IBM Power 710 and 730 Technical Overview and Introduction
Table 1-12 shows the available wall power cord options for the PDU and iPDU features, which
must be ordered separately.
Table 1-12 Wall power cord options for the PDU and iPDU features
The Universal PDUs are compatible with previous models.
To better enable electrical redundancy, each server has two power supplies that must be
connected to separate PDUs, which are not included in the base order.
For maximum availability, a highly desirable approach is to connect power cords from the
same system to two separate PDUs in the rack, and to connect each PDU to independent
power sources.
For detailed power requirements and power cord details, see the Planning for power section
in the IBM Power Systems Hardware Information Center website:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/topic/p7had/p7hadrpower.htm
Feature
code
Wall plug
Rated
voltage (Vac)
Phase
Rated
amperage
Geography
6653 IEC 309,
3P+N+G, 16A
230 3 16 Amps Internationally available
6489 IEC309
3P+N+G, 32A
230 3 24 Amps EMEA
6654 NEMA L6-30 200-208, 240 1 24 Amps US, Canada, LA, Japan
6655 RS 3750DP
(watertight)
200-208, 240 1 24 Amps US, Canada, LA, Japan
6656 IEC 309,
P+N+G, 32A
230 1 24 Amps EMEA
6657 PDL 230-240 1 24 Amps Australia, New Zealand
6658 Korean plug 220 1 24 Amps North and South Korea
6492 IEC 309,
2P+G, 60A
200-208, 240 1 48 Amps US, Canada, LA, Japan
6491 IEC 309,
P+N+G, 63A
230 1 48 Amps EMEA
Notes: Ensure that the appropriate power cord feature is configured to support the power
being supplied. Based on the power cord that is used, the PDU can supply from 4.8 kVA to
19.2 kVA. The power of all the drawers plugged into the PDU must not exceed the power
cord limitation.
Redundant power supplies: The second power supply for the Power 710 server is
optional and not included in the base order.

Chapter 1. General description
31
1.11.8 Rack-mounting rules
Consider the following primary rules when you mount the system into a rack:
The system is designed to be placed at any location in the rack. For rack stability, start
filling a rack from the bottom.
Any remaining space in the rack can be used to install other systems or peripherals, if the
maximum permissible weight of the rack is not exceeded and the installation rules for
these devices are followed.
Before placing the system into the service position, be sure to follow the rack
manufacturer’s safety instructions regarding rack stability.
1.11.9 Useful rack additions
This section highlights several solutions for IBM Power Systems rack-based systems.
IBM System Storage 7214 Tape and DVD Enclosure
The IBM System Storage® 7214 Tape and DVD Enclosure (Model 1U2) is designed to mount
in one EIA unit of a standard IBM Power Systems 19-inch rack and can be configured with
one or two tape drives, or either one or two slim DVD-RAM or DVD-ROM drives in the
right-side bay.
Table 1-13 shows the supported tape or DVD drives for IBM Power servers in the 7214-1U2:
Table 1-13 Supported feature codes for 7214-1U2
IBM System Storage 7216 Multi-Media Enclosure
The IBM System Storage 7216 Multi-Media Enclosure (Model 1U2) is designed to attach to
the Power 710 and the Power 730 through a USB port on the server or through a PCIe SAS
adapter. The 7216 has two bays to accommodate external tape, removable disk drive, or
DVD-RAM drive options.
Feature code
Description
Status
1400 DAT72 36 GB Tape Drive Available
1401 DAT160 80 GB Tape Drive Available
1402 DAT320 160 GB SAS Tape Drive Withdrawn
1420 DVD-RAM SAS Optical Drive Available
1421 DVD-ROM Optical Drive Withdrawn
1423 DVD-ROM Optical Drive Available
1404 LTO Ultrium 4 Half-High 800 GB Tape Drive Available
Support: The IBM System Storage 7214-1U2 Tape and DVD Enclosure is no longer
orderable, although the drawer is supported to be attached to a Power 710 or Power 730
server.

32
IBM Power 710 and 730 Technical Overview and Introduction
Table 1-14 shows the supported tape, RDX, or DVD drives for IBM Power servers in the
7216-1U2.
Table 1-14 Supported feature codes for 7216-1U2
To attach a 7216 Multi-Media Enclosure to the Power 710 and Power 730, consider the
following cabling procedures:
Attachment by an SAS adapter
A PCIe Dual-X4 SAS adapter (FC 5901) or a PCIe LP 2-x4-Port SAS Adapter 3 Gb
(FC 5278) must be installed in the Power 710 and Power 730 server to attach to a 7216
Model 1U2 Multi-Media Storage Enclosure. Attaching a 7216 to a Power 710 and
Power 730 through the integrated SAS adapter is not supported.
For each SAS tape drive and DVD-RAM drive feature installed in the 7216, the appropriate
external SAS cable will be included.
An optional Quad External SAS cable is available by specifying (FC 5544) with each 7216
order. The Quad External Cable allows up to four 7216 SAS tape or DVD-RAM features to
attach to a single System SAS adapter.
Up to two 7216 storage enclosure SAS features can be attached per PCIe Dual-X4 SAS
adapter (FC 5901) or the PCIe LP 2-x4-Port SAS Adapter 3 Gb (FC 5278).
Attachment by a USB adapter
The Removable RDX HDD Docking Station features on 7216 support only the USB cable
that is provided as part of the feature code. Additional USB hubs, add-on USB cables, or
USB cable extenders are not supported.
For each RDX Docking Station feature installed in the 7216, the appropriate external USB
cable will be included. The 7216 RDX Docking Station feature can be connected to the
external, integrated USB ports on the Power 710 and Power 730 or to the USB ports on
4-Port USB PCI Express Adapter (FC 2728).
The 7216 DAT320 USB tape drive or RDX Docking Station features can be connected to
the external integrated USB ports on the Power 710 and Power 730.
Feature code
Description
Status
5619 DAT160 80 GB SAS Tape Drive Available
EU16 DAT160 80 GB USB Tape Drive Available
1402 DAT320 160 GB SAS Tape Drive Withdrawn
5673 DAT320 160 GB USB Tape Drive Withdrawn
1420 DVD-RAM SAS Optical Drive Withdrawn
8247 LTO Ultrium 5 Half-High 1.5 TB SAS Tape Drive Withdrawn
1103 RDX Removable Disk Drive Docking Station Withdrawn
Support: The IBM System Storage 7216-1U2 Multi-Media Enclosure is no longer
orderable, although the drawer is supported to be attached to a Power 710 or Power 730
server.

Chapter 1. General description
33
The two drive slots of the 7216 enclosure can hold the following drive combinations:
One tape drive (DAT160 SAS or LTO Ultrium 5 Half-High SAS) with second bay empty
Two tape drives (DAT160 SAS or LTO Ultrium 5 Half-High SAS) in any combination
One tape drive (DAT160 SAS or LTO Ultrium 5 Half-High SAS) and one DVD-RAM SAS
drive sled with one or two DVD-RAM SAS drives
Up to four DVD-RAM drives
One tape drive (DAT160 SAS or LTO Ultrium 5 Half-High SAS) in one bay, and one RDX
removable HDD docking station in the other drive bay
One RDX removable HDD docking station and one DVD-RAM SAS drive sled with one or
two DVD-RAM SAS drives in the bay on the right
Two RDX removable HDD docking stations
Figure 1-12 shows the 7216 Multi-Media Enclosure.
Figure 1-12
7216 Multi-Media Enclosure
In general, the 7216-1U2 is supported by the AIX, IBM i, and Linux operating systems. IBM i,
from Version 7.1, now fully supports the internal 5.25 inch RDX SATA removable HDD
docking station, including boot support (no VIOS support). This support provides a fast,
robust, high-performance alternative to tape backup and restore devices.
IBM System Storage 7226 Model 1U3 Multi-Media Enclosure
IBM System Storage 7226 Model 1U3 Multi-Media Enclosure can accommodate up to two
tape drives, two RDX removable disk drive docking stations, or up to four DVD RAM drives.
The 7226 offers SAS, USB, and FC electronic interface drive options.
The 7226 Storage Enclosure delivers external tape, removable disk drive, and DVD-RAM
drive options that allow data transfer within similar system archival storage and retrieval
technologies that are installed in existing IT facilities. The 7226 offers an expansive list of
drive feature options.

34
IBM Power 710 and 730 Technical Overview and Introduction
Table 1-15 shows the supported options for IBM Power servers in the 7226-1U3.
Table 1-15 Supported feature codes for 7226-1U3
Option descriptions are as follows:
DAT160 80 GB Tape Drives: With SAS or USB interface options and a data transfer rate of
up to 24 MBps, the DAT160 drive is read/write compatible with DAT160, DAT72, and DDS4
data cartridges.
LTO Ultrium 5 Half-High 1.5 TB SAS and FC Tape Drive: With a data transfer rate up to
280 MBps, the LTO Ultrium 5 drive is read/write compatible with LTO Ultrium 5 and LTO
Ultrium 4 data cartridges, and read-only compatible with Ultrium 3 data cartridges. By
using data compression, an LTO-5 cartridge is capable of storing up to 3 TB of data.
LTO Ultrium 6 Half-High 2.5 TB SAS and FC Tape Drive: With a data transfer rate up to
160 MBps, the LTO Ultrium 6 drive is read/write compatible with LTO Ultrium 5 and LTO
Ultrium 4 data cartridges. By using data compression, an LTO-6 cartridge is capable of
storing up to 6.25 TB of data.
DVD-RAM: The 9.4 GB SAS Slim Optical Drive with an SAS and USB interface option is
compatible with most standard DVD disks.
RDX removable disk drives: The RDX USB docking station is compatible with most RDX
removable disk drive cartridges when used in the same operating system. The 7226 offers
the following RDX removable drive capacity options:
– 320 GB (FC EU08)
– 500 GB (FC 1107)
– 1.0 TB (FC EU01)
– 1.5 TB (FC EU15)
Removable RDX drives are in a rugged cartridge that inserts in an RDX removable (USB)
disk docking station (FC 1103 or FC EU03). RDX drives are compatible with docking stations,
installed internally in IBM POWER6, POWER6+, POWER7, and POWER7+ servers.
Media used in the 7226 DAT160 SAS and USB tape drive features are compatible with
DAT160 tape drives installed internally in IBM POWER6, POWER6+, POWER7, and
POWER7+ servers, and in IBM BladeCenter® systems.
Feature code
Description
Status
5619 DAT160 SAS Tape Drive Available
EU16 DAT160 USB Tape Drive Available
1420 DVD-RAM SAS Optical Drive Available
5762 DVD-RAM USB Optical Drive Available
8248 LTO Ultrium 5 Half High Fibre Drive Available
8247 LTO Ultrium 5 Half High SAS Drive Available
8348 LTO Ultrium 6 Half High Fibre Drive Available
EU11 LTO Ultrium 6 Half High SAS Drive Available
1103 RDX 2.0 Removable Disk Docking Station Withdrawn
EU03 RDX 3.0 Removable Disk Docking Station Available

Chapter 1. General description
35
Media used in LTO Ultrium 5 Half-High 1.5 TB tape drives are compatible with Half High LTO5
tape drives installed in the IBM TS2250 and TS2350 external tape drives, IBM LTO5 tape
libraries, and half-high LTO5 tape drives installed internally in IBM POWER6, POWER6+,
POWER7, and POWER7+ servers.
Figure 1-12 shows the 7226 Multi-Media Enclosure.
Figure 1-13 FC 7226 Multi-Media Enclosure
The 7226 enclosure offers customer-replaceable unit (CRU) maintenance service to help
make installation or replacement of new drives efficient. Other 7226 components are also
designed for CRU maintenance.
The IBM System Storage 7226 Multi-Media Enclosure is compatible with most IBM POWER6,
POWER6+, POWER7, and POWER7+ systems, and also with the IBM BladeCenter models
(PS700, PS701, PS702, PS703, and PS704) that offer current level AIX, IBM i, and Linux
operating systems.
For a complete list of host software versions and release levels that support the 7226, see the
following System Storage Interoperation Center (SSIC) website:
http://www.ibm.com/systems/support/storage/config/ssic/index.jsp
Flat panel display options
The IBM 7316 Model TF3 is a rack-mountable flat panel console kit that consists of a 17-inch,
337.9 mm x 270.3 mm, flat panel color monitor, rack keyboard tray, IBM Travel Keyboard,
support for the IBM Keyboard/Video/Mouse (KVM) switches, and language support. The IBM
7316-TF3 Flat Panel Console Kit offers the following features:
Slim, sleek, lightweight monitor design that occupies only 1U (1.75 inches) in a 19-inch
standard rack
A 17-inch, flat panel TFT monitor with truly accurate images and virtually no distortion
The ability to mount the IBM Travel Keyboard in the 7316-TF3 rack keyboard tray
Support for the IBM Keyboard/Video/Mouse (KVM) switches that provide control of as
many as 128 servers, and support of both USB and PS/2 server-side keyboard and mouse
connections
Unsupported: The IBM i operating system does not support 7226 USB devices.

36
IBM Power 710 and 730 Technical Overview and Introduction
1.11.10 OEM rack
The system can be installed in a suitable OEM rack, provided that the rack conforms to the
EIA-310-D standard for 19-inch racks. This standard is published by the Electrical Industries
Alliance. For detailed information, see the IBM Power Systems Hardware Information Center
at the following website:
http://publib.boulder.ibm.com/infocenter/systems/scope/hw/index.jsp
The website mentions the following key points:
The front rack opening must be 451 mm wide ± 0.75 mm (17.75 in. ± 0.03 in.), and the
rail-mounting holes must be 465 mm ± 0.8 mm (18.3 in. ± 0.03 in.) apart on-center
(horizontal width between the vertical columns of holes on the two front-mounting flanges
and on the two rear-mounting flanges). Figure 1-14 is a top view showing the specification
dimensions.
Figure 1-14 Top view of rack specification dimensions (not specific to IBM)
571mm (22.50 in.)
Drawer Rail
Mounting
Flanges
Back, No Door
494mm (19.45 in.)
Front, No Door
203mm (8.0 in.)
719mm (28.31 in.)
51mm (2.01 in.)
451mm (17.76 in.)
494mm (19.45 in.)

Chapter 1. General description
37
The vertical distance between the mounting holes must consist of sets of three holes
spaced (from bottom to top) 15.9 mm (0.625 in.), 15.9 mm (0.625 in.), and 12.67 mm
(0.5 in.) on-center, making each three-hole set of vertical hole spacing 44.45 mm (1.75 in.)
apart on center. Rail-mounting holes must be 7.1 mm ± 0.1 mm (0.28 in. ± 0.004 in.) in
diameter. Figure 1-15 shows the top front specification dimensions.
Figure 1-15 Rack specification dimensions, top front view
Hole Diameter =
7.1 +/- 0.1mm
Rack Mounting Holes Center-to-Center
Rack Front Opening
450 +/- 0.75mm
465 +/- 0.8mm
EIA Hole Spacing
6.75mm min
15.9mm
15.9mm
12.7mm
15.9mm
15.9mm
12.7mm
6.75mm min
15.9mm
15.9mm
12.7mm
15.9mm
15.9mm
12.7mm
Top Front of Rack
Top Front of Rack

38
IBM Power 710 and 730 Technical Overview and Introduction

© Copyright IBM Corp. 2013. All rights reserved.
39
Chapter 2.
Architecture and technical
overview
This chapter discusses the overall system architecture for the IBM Power 710 and Power 730,
represented by Figure 2-1 on page 40 and Figure 2-2 on page 41. The bandwidths that are
provided throughout the section are theoretical maximums, used for reference.
The speeds shown are at an individual component level. Multiple components and application
implementation are key to achieving the best performance.
Always do the performance sizing at the application workload environment level and evaluate
performance using real-world performance measurements and production workloads.
2

40
IBM Power 710 and 730 Technical Overview and Introduction
Figure 2-1 shows the logical system diagram for the Power 710.
Figure 2-1 IBM Power 710 logical system diagram
POWER7+ Chip 1
4-6-8 cores
P7-IOC
Buffer
Buffer
DIMM #1
DIMM #3
Memory Card #1 Memory Card #2
GX++ SLOT #1
PCIe Gen2 x8 (FH/HL) SLOT #2
PCIe Gen2 x8 (FH/HL) SLOT #3
PCIe Gen2 x8 (FH/HL) SLOT #4
PCIe Gen2 x8 (FH/HL) SLOT #5
PCIe Gen2 x8 (FH/HL) SLOT #1
PCIe Gen2 x4 (FH/HL) SLOT #6
DIMM #2
DIMM #4
Buffer
Buffer
DIMM #1
DIMM #3
DIMM #2
DIMM #4
TPMD
Memory Controller
SAS
Controller
RAIDs 0,1,10
Optional RAID 5 & 6
Expansion Card
DASD & Media Backplane
HDD1
HDD2
HDD3
HDD4
HDD5
HDD6
DVD
USB #1
USB #2
USB #3
USB #4
USB
Controller
2 System Ports
2 HMC Ports
2 SPCN Ports
VPD Chip
Service Processor
PCIe
Switch
68.2 GB/s
20 GB/s
20 GB/s

Chapter 2. Architecture and technical overview
41
Figure 2-2 shows the logical system diagram for the Power 730.
Figure 2-2 IBM Power 730 logical system diagram
POWER7+ Chip 2
4-6-8 cores
POWER7+ Chip 1
4-6-8 cores
P7-IOC
Buffer
Buffer
DIMM #1
DIMM #3
Memory Card #1 Memory Card #2
Memory Card #3 Memory Card #4
GX++ SLOT #2
GX++ SLOT #1
PCIe Gen2 x8 (FH/HL) SLOT #2
PCIe Gen2 x8 (FH/HL) SLOT #3
PCIe Gen2 x8 (FH/HL) SLOT #4
PCIe Gen2 x8 (FH/HL) SLOT #5
PCIe Gen2 x8 (FH/HL) SLOT #1
PCIe Gen2 x4 (FH/HL) SLOT #6
DIMM #2
DIMM #4
Buffer
Buffer
DIMM #1
DIMM #3
DIMM #2
DIMM #4
TPMD
Memory Controller
Memory Controller
SAS
Controller
RAIDs 0,1,10
Optional RAID 5 & 6
Expansion Card
DASD & Media Backplane
HDD1
HDD2
HDD3
HDD4
HDD5
HDD6
DVD
USB #1
USB #2
USB #3
USB #4
USB
Controller
2 System Ports
2 HMC Ports
2 SPCN Ports
VPD Chip
Service Processor
Buffer
Buffer
DIMM #1
DIMM #3
DIMM #2
DIMM #4
Buffer
Buffer
DIMM #1
DIMM #3
DIMM #2
DIMM #4
PCIe
Switch
68.2 GB/s
68.2 GB/s
19.7 GB/s
19.7 GB/s
19.7 GB/s

42
IBM Power 710 and 730 Technical Overview and Introduction
2.1 The IBM POWER7+ processor
The IBM POWER7+ processor represents a leap forward in technology achievement and
associated computing capability. The multi-core architecture of the POWER7+ processor is
matched with innovation across a wide range of related technologies to deliver leading
throughput, efficiency, scalability, and reliability, availability, and serviceability (RAS).
Although the processor is an important component in delivering outstanding servers, many
elements and facilities must be balanced on a server to deliver maximum throughput. As with
previous generations of systems based on IBM POWER® processors, the design philosophy
for POWER7+ processor-based systems is one of system-wide balance in which the
POWER7+ processor plays an important role.
IBM uses innovative technologies to achieve required levels of throughput and bandwidth.
Areas of innovation for the POWER7+ processor and POWER7+ processor-based systems
include (but are not limited to) the following items:
On-chip L3 cache implemented in embedded dynamic random access memory (eDRAM)
Cache hierarchy and component innovation
Advances in memory subsystem
Advances in off-chip signaling
Advances in I/O card throughput and latency
Advances in RAS features such as power-on reset and L3 cache dynamic column repair
The superscalar POWER7+ processor design also provides a variety of other capabilities:
Binary compatibility with the prior generation of POWER processors
Support for PowerVM virtualization capabilities, including PowerVM Live Partition Mobility
to and from POWER6, POWER6+, and POWER7 processor-based systems
Figure 2-3 on page 43 shows the POWER7+ processor die layout, with the major areas
identified:
Processor cores
L2 cache
L3 cache and chip interconnection
Simultaneous multiprocessing links
Memory controllers.
I/O links

Chapter 2. Architecture and technical overview
43
Figure 2-3 POWER7+ processor die with key areas indicated
2.1.1 POWER7+ processor overview
The POWER7+ processor chip is fabricated with IBM 32 nm Silicon-On-Insulator (SOI)
technology using copper interconnects, and implements an on-chip L3 cache using eDRAM.
The POWER7+ processor chip is 567 mm
2
and has 2.1 billion components (transistors). Up
to eight processor cores are on the chip, each with 12 execution units, 256 KB of L2 cache
per core, and up to 80 MB of shared on-chip L3 cache per chip.
For memory access, the POWER7+ processor includes a double data rate 3 (DDR3) memory
controller with four memory channels.

44
IBM Power 710 and 730 Technical Overview and Introduction
Table 2-1 summarizes the technology characteristics of the POWER7+ processor.
Table 2-1 Summary of POWER7+ processor technology
2.1.2 POWER7+ processor core
Each POWER7+ processor core implements aggressive out-of-order (OoO) instruction
execution to drive high efficiency in the use of available execution paths. The POWER7+
processor has an Instruction Sequence Unit that is capable of dispatching up to six
instructions per cycle to a set of queues. Up to eight instructions per cycle can be issued to
the instruction execution units. The POWER7+ processor has a set of 12 execution units:
Two fixed point units
Two load store units
Four double precision floating point units
One vector unit
One branch unit
One condition register unit
One decimal floating point unit
The following caches are tightly coupled to each POWER7+ processor core:
Instruction cache: 32 KB
Data cache: 32 KB
L2 cache: 256 KB, implemented in fast SRAM
Technology
POWER7+ processor
Die size 567 mm
2
Fabrication technology 32 nm lithography
Copper interconnect
Silicon-on-Insulator
eDRAM
Processor cores 3, 4, 6, or 8
Maximum execution threads core/chip 4/32
Maximum L2 cache core/chip 256 KB/2 MB
Maximum On-chip L3 cache core/chip 10 MB/80 MB
DDR3 memory controllers 1
SMP design-point 32 sockets with IBM POWER7+ processors
Compatibility With prior generation of POWER processor

Chapter 2. Architecture and technical overview
45
2.1.3 Simultaneous multithreading
POWER7+ processors support SMT1, SMT2, and SMT4 modes to enable up to four
instruction threads to execute simultaneously in each POWER7+ processor core. The
processor supports the following instruction thread execution modes:
SMT1: Single instruction execution thread per core
SMT2: Two instruction execution threads per core
SMT4: Four instruction execution threads per core
SMT4 mode enables the POWER7+ processor to maximize the throughput of the processor
core by offering an increase in processor-core efficiency. SMT4 mode is the latest step in an
evolution of multithreading technologies introduced by IBM.
Figure 2-4 shows the evolution of simultaneous multithreading in the industry.
Figure 2-4 Evolution of simultaneous multithreading
The various SMT modes offered by the POWER7+ processor allow flexibility, enabling users
to select the threading technology that meets an aggregation of objectives such as
performance, throughput, energy use, and workload enablement.
Intelligent Threads
The POWER7+ processor features Intelligent Threads that can vary based on the workload
demand. The system either automatically selects (or the system administrator can manually
select) whether a workload benefits from dedicating as much capability as possible to a
single thread of work, or if the workload benefits more from having capability spread across
two or four threads of work. With more threads, the POWER7+ processor can deliver more
total capacity as more tasks are accomplished in parallel.
2004 2-way SMT
FX0
FX1
FP0
FP1
LS0
LS1
BRX
CRL
FX0
FX1
FP0
FP1
LS0
LS1
BRX
CRL
1995 Single thread out of order
FX0
FX1
FP0
FP1
LS0
LS1
BRX
CRL
1997 Hardware multi-thread
FX0
FX1
FP0
FP1
LS0
LS1
BRX
CRL
2010 4-way SMT
Thread 1 ExecutingThread 0 Executing
Thread 3 ExecutingThread 2 Executing
No Thread Executing
Multi-threading evolution

46
IBM Power 710 and 730 Technical Overview and Introduction
With fewer threads, those workloads that need fast individual tasks can get the performance
that they need for maximum benefit.
2.1.4 Memory access
Each POWER7+ processor chip has one memory controller that uses four memory channels.
Each memory channel operates at 1066 MHz connects to two DIMMs.
In the Power 710 server, each channel can address up to 64 GB. Thus the Power 710 is
capable of addressing up to 256 GB of total memory.
In the Power 730 server, each channel can address up to 64 GB. Thus the Power 730 is
capable of addressing up to 512 GB of total memory.
Figure 2-5 gives a simple overview of the POWER7+ processor memory access structure in
the Power 710 and Power 730.
Figure 2-5 Overview of POWER7+ memory access structure
Buffer
Port A
Port B
DDR3 RDIMM Slot 3
DDR3 RDIMM Slot 1
Buffer
Port A
Port B
DDR3 RDIMM Slot 4
DDR3 RDIMM Slot 2
Buffer
Port A
Port B
DDR3 RDIMM Slot 4
DDR3 RDIMM Slot 2
Buffer
Port A
Port B
DDR3 RDIMM Slot 3
DDR3 RDIMM Slot 1
POWER7+
SCM
Memory
Channel D
Memory
Channel C
Memory
Channel B
Memory
Channel A

Chapter 2. Architecture and technical overview
47
2.1.5 On-chip L3 cache innovation and Intelligent Cache
A breakthrough in material engineering and microprocessor fabrication enabled IBM to
implement the L3 cache in eDRAM and place it on the POWER7+ processor die. L3 cache is
critical to a balanced design, as is the ability to provide good signaling between the L3 cache
and other elements of the hierarchy, such as the L2 cache or SMP interconnect.
The on-chip L3 cache is organized into separate areas with differing latency characteristics.
Each processor core is associated with a fast local region of L3 cache (FLR-L3) but also has
access to other L3 cache regions as shared L3 cache. Additionally, each core can negotiate
to use the FLR-L3 cache associated with another core, depending on reference patterns.
Data can also be cloned to be stored in more than one core’s FLR-L3 cache, again depending
on reference patterns. This

Intelligent Cache management enables the POWER7+ processor
to optimize the access to L3 cache lines and minimize overall cache latencies.
Figure 2-6 shows fast local L3 cache region for each core on the POWER7+ processor die.
Figure 2-6 Fast local regions of L3 cache on the POWER7+ processor
Core
Core
Core
Core
Core
L2 Cache
Core
L2 Cache
Core
L2 Cache
Core
L2 Cache
Mem Ctrl Mem Ctrl
L3 Cache and Chip Interconnect
Local SMP Links
Local SMP Links
Local SMP Links
Remote SMP + I/O Links
Remote SMP + I/O Links
Remote SMP + I/O Links
Fast local L3
Cache Region
Fast local L3
Cache Region
Fast local L3
Cache Region
Fast local L3
Cache Region
L2 Cache
L2 Cache
L2 Cache
L2 Cache
Fast local L3
Cache Region
Fast local L3
Cache Region
Fast local L3
Cache Region
Fast local L3
Cache Region

48
IBM Power 710 and 730 Technical Overview and Introduction
The innovation of using eDRAM on the POWER7+ processor die is significant for
several reasons:
Latency improvement
A six-to-one latency improvement occurs by moving the L3 cache on-chip compared to L3
accesses on an external (on-ceramic) ASIC.
Bandwidth improvement
A 2x bandwidth improvement occurs with on-chip interconnect. Frequency and bus sizes
are increased to and from each core.
No off-chip driver or receivers
Removing drivers or receivers from the L3 access path lowers interface requirements,
conserves energy, and lowers latency.
Small physical footprint
The performance of eDRAM when implemented on-chip is similar to conventional SRAM
but requires far less physical space. IBM on-chip eDRAM uses only a third of the
components that conventional SRAM uses, which has a minimum of six transistors to
implement a 1-bit memory cell.
Low energy consumption
The on-chip eDRAM uses only 20% of the standby power of SRAM.
2.1.6 POWER7+ processor and Intelligent Energy
Energy consumption is an important area of focus for the design of the POWER7+ processor,
which includes Intelligent Energy features that help to dynamically optimize energy usage and
performance so that the best possible balance is maintained. Intelligent Energy features, such
as EnergyScale, work with IBM Systems Director Active Energy Manager™ to dynamically
optimize processor speed based on thermal conditions and system utilization.
2.1.7 Comparison of the POWER7+, POWER7, and POWER6 processors
Table 2-2 shows comparable characteristics between the generations of POWER7+,
POWER7, and POWER6 processors.
Table 2-2 Comparison of technology for the POWER7+ processor and the prior generation
Characteristics
POWER7+
POWER7
POWER6
Technology 32 nm 45 nm 65 nm
Die size 567 mm
2
567 mm
2
341 mm
2
Maximum cores 8 8 2
Maximum SMT
threads per core
4 threads 4 threads 2 threads
Maximum frequency 4.4 GHz 4.25 GHz 5.0 GHz
L2 Cache 256 KB per core 256 KB per core 4 MB per core

Chapter 2. Architecture and technical overview
49
2.2 POWER7+ processor modules
The Power 710 and Power 730 server chassis house POWER7+ processor single chip
modules (SCMs). Each SCM can access four DDR3 memory DIMM slots.
The Power 710 server houses one processor module, offering 4-core 3.6 GHz, 6-core
4.2 GHz, or 8-core 4.2 GHz configurations.
The Power 730 server houses two processor modules, offering 8-core 4.3 GHz, 12-core
4.2 GHz, and 16-core 3.6 Ghz and 4.2 GHz configurations.
All installed processors must be activated, unless they are factory deconfigured by using
FC 2319.
L3 Cache 10 MB of FLR-L3
cache per core with
each core having
access to the full
80 MB of L3 cache,
on-chip eDRAM
4 MB or 8 MB of
FLR-L3 cache per core
with each core having
access to the full
32 MB of L3 cache,
on-chip eDRAM
32 MB off-chip
eDRAM ASIC
Memory support DDR3 DDR3 DDR2
I/O bus Two GX++ Two GX++ One GX++
Enhanced cache
mode (TurboCore)
No Yes
a
No
a. Only supported on the Power 795.
Characteristics
POWER7+
POWER7
POWER6
Note: All POWER7+ processors in the system must be the same frequency and have
the same number of processor cores. POWER7+ processor types cannot be mixed within
a system.

50
IBM Power 710 and 730 Technical Overview and Introduction
2.2.1 Modules and cards
Figure 2-7 shows a Power 730 server highlighting the POWER7+ processor modules and the
memory riser cards.
Figure 2-7 Power 730 with two POWER7+ processor modules and four memory riser cards
2.2.2 Power 710 and Power 730 systems
Power 710 and Power 730 systems support POWER7+ processors with various core-counts.
Table 2-3 summarizes the POWER7+ processor options for the Power 710 system.
Table 2-3 Summary of POWER7+ processor options for the Power 710 system
POWER7+ processor
modules
Memory riser card
Feature
code
Cores per
POWER7+
processor
Frequency
(GHz)
Processor activation
Min/Max
a

cores per
system
a. Minimum and maximum
Min/Max
a

processor
module
EPCE 4 3.6 The 4-core 3.6 GHz requires
that four processor activation
codes are ordered, available as
4 x FC EPDE or 2 x FC EPDE
and 2 x FC EPEE.
4/4 1/1
EPCG 6 4.2 The 6-core 4.2 GHz requires
that six processor activation
codes be ordered, available as
6 x FC EPDG or 3 x FC EPDG
and 3 x FC EPEG.
6/6 1/1
EPCJ 8 4.2 The 8-core 4.2 GHz requires
that eight processor activation
codes be ordered, available as
8 x FC EPDJ or 4 x FC EPDJ
and 4 x FC EPEJ.
8/8 1/1

Chapter 2. Architecture and technical overview
51
Table 2-4 summarizes the POWER7+ processor options for the Power 730 system.
Table 2-4 Summary of POWER7+ processor options for the Power 730 system
2.3 Memory subsystem
The Power 710 is a one-socket system that supports a single POWER7+ processor module.
The server supports a maximum of eight DDR3 DIMM slots, with four DIMM slots included in
the base configuration and four DIMM slots available with an optional memory riser card. The
supported memory features (two memory DIMMs per feature) are 8 GB, 16 GB, 32 GB, and
64 GB, running at speeds of 1066 MHz. A system with the optionally installed memory riser
card has a maximum memory of 256 GB.
The Power 730 is a two-socket system that supports up to two POWER7+ processor
modules. The server supports a maximum of 16 DDR3 DIMM slots, with four DIMM slots
included in the base configuration, and 12 DIMM slots available with three optional memory
riser cards. The supported memory features (two memory DIMMs per feature) are 8 GB,
16 GB, 32 GB, and 64 GB, running at speeds of 1066 MHz. A system with three optionally
installed memory riser cards has a maximum memory of 512 GB.
These servers support an optional feature called Active Memory Expansion (FC 4795) that
allows the effective maximum memory capacity to be much larger than the true physical
memory. This feature executes innovative compression or decompression of memory content
by using processor cycles to provide memory expansion up to 125%, depending on the
workload type and its memory utilization. A server with a maximum of 256 GB can effectively
be expanded over 512 GB. This approach can enhance virtualization and server
consolidation by allowing a partition to do significantly more work with the same physical
amount of memory or a server to run more partitions and do more work with the same
physical amount of memory.
Feature
Cores per
POWER7
processor
Frequency
(GHz)
Processor activation
Min/Max
cores per
system
Min/Max
processor
module
EPCF 4 4.3 The 4-core 4.3 GHz requires
that four processor activation
codes are ordered, available as
4 x FC EPDF or 2 x FC EPDF
and 2 x FC EPEF
8/8 2/2
EPCG 6 4.2 The 6-core 4.2 GHz requires
that six processor activation
codes are ordered, available as
6 x FC EPDG or 3 x FC EPDG
and 3 x FC EPEG.
12/12 2/2
EPCH 8 3.6 The 8-core 3.6 GHz requires
that six processor activation
codes are ordered, available as
8 x FC EPDH or 4 x FC EPDH
and 4 x FC EPEH.
16/16 2/2
EPCJ 8 4.2 The 8-core 4.2 GHz requires
that eight processor activation
codes are ordered, available as
8 x FC EPDJ or 4 x FC EPDJ
and 4 x FC EPEJ.
16/16 2/2

52
IBM Power 710 and 730 Technical Overview and Introduction
2.3.1 Registered DIMM
Industry standard DDR3 Registered DIMM (RDIMM) technology is used to increase reliability,
speed, and density of memory subsystems by putting a register between the DIMM modules
and the memory controller. This register is also referred to as a buffer.
2.3.2 Memory placement rules
The following memory options are orderable:
8 GB (2 x 4 GB) Memory DIMMs, 1066 MHz (FC EM08)
16 GB (2 x 8 GB) Memory DIMMs, 1066 MHz (FC EM4B, CCIN 31FA)
32 GB (2 x 16 GB) Memory DIMMs, 1066 MHz (FC EM4C)
64 GB (2 x 32 GB) Memory DIMMs, 1066 MHz (FC EM4D)
A minimum of 8 GB memory is required for a Power 710 system or a Power 730 system.
The supported maximum memory is as follows:
Power 710: 256 GB (four 32 GB DIMMs on each of two memory cards)
Power 730: 512 GB (four 32 GB DIMMs on each of four memory cards)
Figure 2-8 shows the physical memory DIMM topology.
Figure 2-8 Memory DIMM topology for the Power 710 and Power 730
Memory
Card #1
DDR3 RDIMM Slot 2
DDR3 RDIMM Slot 4
Port A
BC-A
Port B
DDR3 RDIMM Slot 1
DDR3 RDIMM Slot 3
Port A
BC-B
Port B
DDR3 RDIMM Slot 2
DDR3 RDIMM Slot 4
Port A
BC-C
Port B
DDR3 RDIMM Slot 1
DDR3 RDIMM Slot 3
Port A
BC-D
Port B
Memory
Card #2
POWER7+
SCM
MC0
Channel D
MC0
Channel C
MC0
Channel B
MC0
Channel A
MC: Memory Controller
BC: Memory Buffer

Chapter 2. Architecture and technical overview
53
The memory-placement rules are as follows:
The base machine contains one memory riser card with four DIMM sockets. Memory
features occupy two memory DIMM sockets.
The Power 710 offers one additional memory riser card feature (1 x FC 5265, CCIN 2BE3)
with an additional four DIMM sockets. Maximum system memory is 128 GB without
feature FC 5265 and 256 GB with one feature FC 5265.
The Power 730 offers three optional memory riser card features (3 x FC 5265,
CCIN 2BE3) with an additional four DIMM sockets per feature. Maximum system memory
is 128 GB without feature FC 5265 and 256 GB with three feature FC 5265.
A system can be ordered with a single memory feature FC EM08, FC EM4B, FC EM4C, or
FC EM4D. The second memory feature, ordered on the same memory riser card, does not
have to match the first memory feature. Memory features can be mixed on either memory
riser card.
A minimum of one memory feature must be plugged into each memory riser card. Empty
memory riser cards are not allowed.
There is a performance benefit when all DIMMs on a memory riser card are of the
same capacity.
In general, the best approach is to install memory evenly across all memory riser cards in the
system. Balancing memory across the installed memory riser cards allows memory access in
a consistent manner and typically results in the best possible performance for your
configuration. However, balancing memory fairly evenly across multiple memory riser cards,
compared to balancing memory exactly evenly, typically has a small performance difference.
Account for any plans for future memory upgrades when you decide which memory feature
size to use at the time of the initial system order.
Figure 2-9 through Figure 2-13 on page 55 show the memory DIMMs plugging rules for
Power 710 and Power 730.
Figure 2-9 Memory DIMM installation sequence for one processor with one riser cards
Pair 2
Pair 1
Pair 2
Pair 1
POWER7+
#1
P1-C17-C1
P1-C17-C2
P1-C17-C3
P1-C17-C4

54
IBM Power 710 and 730 Technical Overview and Introduction
Figure 2-10 Memory DIMM installation sequence for one processor with two riser cards
Figure 2-11 Memory DIMM installation sequence for two processor with two riser cards (Power 730 only)
Figure 2-12 Memory DIMM installation sequence for two processor with three riser cards (Power 730 only)
Pair 3
Pair 1
Pair 3
Pair 1
Memory Card #2 – P1-C16
Pair 4
Pair 2
Pair 4
Pair 2
POWER7+
#1
P1-C16-C1
P1-C16-C2
P1-C16-C3
P1-C16-C4
Memory Card #1 – P1-C17
P1-C17-C1
P1-C17-C2
P1-C17-C3
P1-C17-C4
Pair 3
Pair 1
Pair 3
Pair 1
POWER7+
#1
Memory Card #1 – P1-C17
P1-C17-C1
P1-C17-C2
P1-C17-C3
P1-C17-C4
Pair 4
Pair 2
Pair 4
Pair 2
Memory Card #3 – P1-C15
P1-C15-C1
P1-C15-C2
P1-C15-C3
P1-C15-C4
POWER7+
#2
Pair 4
Pair 1
Pair 4
Pair 1
Memory Card #2 – P1-C16
Pair 6
Pair 3
Pair 6
Pair 3
POWER7+
#1
P1-C16-C1
P1-C16-C2
P1-C16-C3
P1-C16-C4
Memory Card #1 – P1-C17
P1-C17-C1
P1-C17-C2
P1-C17-C3
P1-C17-C4
Pair 5
Pair 2
Pair 5
Pair 2
Memory Card #3 – P1-C15
P1-C15-C1
P1-C15-C2
P1-C15-C3
P1-C15-C4
POWER7+
#2

Chapter 2. Architecture and technical overview
55
Figure 2-13 Memory DIMM installation sequence for two processor with four riser cards (Power 730 only)
Figure 2-14 shows the DIMM slot positions on the memory riser cards.
Figure 2-14 Memory riser card for the Power 710 and Power 730 systems
2.3.3 Memory bandwidth
The POWER7+ processor has exceptional cache, memory, and interconnect bandwidths.
Table 2-5 shows the maximum bandwidth estimates for the Power 710 and Power 730
systems.
Table 2-5 Power 710 and Power 730 processor and memory bandwidth estimates
Pair 5
Pair 1
Pair 5
Pair 1
Memory Card #2 – P1-C16
Pair 7
Pair 3
Pair 7
Pair 3
POWER7+
#1
P1-C16-C1
P1-C16-C2
P1-C16-C3
P1-C16-C4
Memory Card #1 – P1-C17
P1-C17-C1
P1-C17-C2
P1-C17-C3
P1-C17-C4
Pair 6
Pair 2
Pair 6
Pair 2
Memory Card #4 – P1-C14
Pair 8
Pair 4
Pair 8
Pair 4
P1-C14-C1
P1-C14-C2
P1-C14-C3
P1-C14-C4
Memory Card #3 – P1-C15
P1-C15-C1
P1-C15-C2
P1-C15-C3
P1-C15-C4
POWER7+
#2
Slot #1 – P1-Cn-C1
Slot #2 – P1-Cn-C2
Slot #3 – P1-Cn-C3
Slot #4 – P1-Cn-C4
Buffer A
Buffer B
Memory
Power 710
Power 730
4.284 GHz processor card
4.312 GHz processor card
L1 (data) cache 205.632 GBps 206.976 GBps
L2 cache 205.632 GBps 206.976 GBps
L3 cache 137.088 GBps 137.984 GBps
System memory 68.224 GBps 68.224 GBps (single socket)
136.448 GBps (dual sockets)

56
IBM Power 710 and 730 Technical Overview and Introduction
The bandwidth figures for the caches are calculated as follows:
L1 cache: In one clock cycle, two 16-byte load operations and one 16-byte store operation
can be accomplished. By using a 4.312 GHz processor card, the formula is as follows:
(2 * 16 B + 1 * 16 B) * 4.312 GHz = 206.976 GBps
L2 cache: In one clock cycle, one 32-byte load operation and one 16-byte store operation
can be accomplished. By using a 4.312 GHz processor card the formula is as follows:
(1 * 32 B + 1 * 16 B) * 4.312 GHz = 206.976 GBps
L3 cache: One 32-byte load operation and one 32-byte store operation can be
accomplished at half-clock speed. By using a 4.312 GHz processor card the formula is as
follows:
(1 * 32 B + 1 * 32 B) * (4.312 GHz / 2) = 137.984 GBps
Memory: The Power 710 and Power 730 system use one memory controller of the
POWER7+ processor. The memory controller is connected to a buffer chip using four
ports with 8 bytes. Each buffer chip connects to two DIMMs running at 1066 MHz. See
Figure 2-8 on page 52 for reference. The bandwidth formula is calculated as follows:
1 memory controller * 4 ports * 8 bytes * 2 DIMMs * 1066 MHz = 68.224 GBps
2.4 Capacity on Demand
Capacity on Demand is not supported on the Power 710 and Power 730 systems.
2.5 System bus
This section provides more information related to the internal buses.
The Power 710 and Power 730 systems have internal I/O connectivity through Peripheral
Component Interconnect Express (PCI Express, or PCIe) slots, and also external connectivity
through InfiniBand adapters.
The internal I/O subsystem on the Power 710 and Power 730 is connected to the GX bus on a
POWER7+ processor in the system. This bus runs at 2.5 GHz and provides 20 GBps of I/O
connectivity to the PCIe slots, integrated Ethernet adapter ports, SAS internal adapters, and
USB ports.
Additionally, the POWER7+ processor chip is installed on the Power 710 and each of the
processor chips on the Power 730 provide a GX++ bus, which is used to optionally connect to
the GX adapters. Each bus runs at 2.5 GHz and provides 20 GBps bandwidth.
The GX++ LP 1-port PCIe2 x8 Adapter (FC EJ0H) can be installed in the GX++ slot on the
Power 710 and on either or both GX++ slots of the Power 730. It is used for attaching
FC EDR1 EXP30 Ultra SSD I/O Drawer to the server. When FC EJ0H is installed in GX++
slot 2, PCIe slot 6 is physically blocked and cannot be used.
The GX++ Dual-port 12x Channel Attach Adapter (FC EJ0G) is supported only on the
Power 730. It is used for Remote I/O Drawer Expansion, such as for attaching FC 5802 or
FC 5877 I/O drawers to the system enclosure. FC EJ0G is a double-wide adapter that
requires the installation of a separate SPCN controller card (part of FC EJ0G), which is
installed in GX++ slot 1. Therefore, when installing FC EJ0G in the system, GX++ slots 1 and
2 are used and PCIe slots 5 and 6 are not usable.

Chapter 2. Architecture and technical overview
57
Table 2-6 lists the I/O bandwidth of Power 710 and Power 730 processor configurations.
Table 2-6 I/O bandwidth
2.6 Internal I/O subsystem
The internal I/O subsystem resides on the system planar, which supports PCIe slots. PCIe
adapters on the Power 710 and Power 730 are not hot pluggable. However, PCIe adapters on
the attached I/O drawers are hot-pluggable.
All PCIe slots support Enhanced Error Handling (EEH). PCI EEH-enabled adapters respond
to a special data packet generated from the affected PCIe slot hardware by calling system
firmware, which will examine the affected bus, allow the device driver to reset it, and continue
without a system reboot. For Linux, EEH support extends to the majority of frequently used
devices, although certain third-party PCI devices might not provide native EEH support.
2.6.1 Slot configuration
Table 2-7 displays the PCIe Gen2 slot configuration of Power 710 and Power 730.
Table 2-7 Slot configuration of a Power 710 and Power 730
Remember: The GX++ slots are not hot-pluggable.
I/O
I/O bandwidth (maximum theoretical)
GX++ Bus from the first POWER7 SCM to the I/O chip 10 GBps simplex
20 GBps duplex
GX++ Bus (slot 1) 10 GBps simplex
20 GBps duplex
GX++ Bus (slot 2 - on Power 730 only) 10 GBps simplex
20 GBps duplex
Total I/O bandwidth Power 710:
20 GBps simplex
40 GBps duplex
Power 730:
30 GBps simplex
60 GBps duplex
Slot
Description
Location code
PCI Host Bridge (PHB)
Max card size
Slot 1 PCIe Gen2 x8 P1-C2 P7IOC PCIe PHB5 Low profile
Slot 2 PCIe Gen2 x8 P1-C3 P7IOC PCIe PHB4 Low profile
Slot 3 PCIe Gen2 x8 P1-C4 P7IOC PCIe PHB3 Low profile
Slot 4 PCIe Gen2 x8 P1-C5 P7IOC PCIe PHB2 Low profile
Slot 5 PCIe Gen2 x8 P1-C6 P7IOC PCIe PHB1 Low profile
Slot 6 PCIe Gen2 x4 P1-C7 P7IOC PCIe PHB0 Low profile

58
IBM Power 710 and 730 Technical Overview and Introduction
2.6.2 System ports
The system planar has two serial ports that are called system ports. When an HMC is
connected to the server, the integrated system ports of the server are rendered
non-functional. In this case, you must install an asynchronous adapter, which is described in
Table 2-16 on page 67, for serial port usage:
Integrated system ports are not supported under AIX or Linux when the HMC ports are
connected to an HMC. Either the HMC ports or the integrated system ports can be used,
but not both.
The integrated system ports are supported for modem and asynchronous terminal
connections. Any other application using serial ports requires a serial port adapter to
be installed in a PCI slot. The integrated system ports do not support IBM PowerHA®
configurations.
Configuration of the two integrated system ports, including basic port settings (baud rate,
and so on), modem selection, call-home and call-in policy, can be performed with the
Advanced Systems Management Interface (ASMI).
2.7 PCI adapters
This section covers the various types and functionality of the PCI adapters supported with the
IBM Power 710 and Power 730 systems.
2.7.1 PCI express
Peripheral Component Interconnect Express (PCIe) uses a serial interface and allows for
point-to-point interconnections between devices (using a directly wired interface between
these connection points). A single PCIe serial link is a dual-simplex connection that uses two
pairs of wires, one pair for transmit and one pair for receive, and can transmit only one bit per
cycle. These two pairs of wires are called a
lane
. A PCIe link can consist of multiple lanes. In
such configurations, the connection is labeled as x1, x2, x8, x12, x16, or x32, where the
number is effectively the number of lanes.
Two generations of PCIe interface are supported in Power 710 and Power 730 models:
Gen1: Capable of transmitting at the extremely high speed of 2.5 Gbps, which gives a
capability of a peak bandwidth of 2 GBps simplex on an x8 interface
Gen2: Double the speed of the Gen1 interface, which gives a capability of a Peak
bandwidth of 4 GBps simplex on an x8 interface
Remember: Slot 6 is shared with GX++ adapter slot 2. If a PCIe adapter is plugged into
slot 6, then a GX++ adapter cannot be plugged into GX++ slot 2 and the other way around.
Remember: The integrated console/modem port usage just described is for systems
configured as a single, system-wide partition. When the system is configured with multiple
partitions, the integrated console/modem ports are disabled because the TTY console and
call home functions are performed with the HMC.

Chapter 2. Architecture and technical overview
59
PCIe Gen1 slots support Gen1 adapter cards and also most of the Gen2 adapters. In this
case, where a Gen2 adapter is used in a Gen1 slot, the adapter will operate at PCIe Gen1
speed. PCIe Gen2 slots support both Gen1 and Gen2 adapters. In this case, where a Gen1
card is installed into a Gen2 slot, it will operate at PCIe Gen1 speed with a slight performance
enhancement. When a Gen2 adapter is installed into a Gen2 slot, it will operate at the full
PCIe Gen2 speed.
The Power 710 and Power 730 system enclosure is equipped with five PCIe x8 Gen2 Low
Profile slots. In addition, there is a sixth PCIe x4 dedicated to a 4-port PCIe Ethernet card that
comes standard with the base unit.
All adapters support Enhanced Error Handling (EEH). PCIe adapters use a different type of
slot than PCI adapters. If you attempt to force an adapter into the wrong type of slot, you
might damage the adapter or the slot.
2.7.2 PCIe adapter form factors
IBM POWER7 and POWER7+ processor based servers are able to support two different form
factors of PCIe adapters:
PCIe low profile (LP) cards, which are used with the Power 710 and Power 730 PCIe slots.
Low profile adapters are also used in the PCIe riser card slots of Power 720 and
Power 740 servers.
PCIe full height and full high cards that are plugged into the following servers slots:
– Power 720 and Power 740 (in base system, five PCIe half length slots are supported.)
– Power 750
– Power 755
– Power 760
– Power 770
– Power 780
– Power 795
– PCIe slots of external I/O drawers, such as FC 5802 and FC 5877
Low profile PCIe adapters cards are only supported in low profile PCIe slots, and full height
and full high cards are only supported in full high slots.
Notes:
The PCIe2 LP 4-port 1 Gb Ethernet adapter (FC 5260) is the only PCIe adapter which
is allowed at the P1-C7 PCIe x4 slot in the Power 710 and Power 730 servers. Other
PCIe adapters available on the Power 710 and Power 730 are not supported in the
P1-C7 slot.
If a GX++ adapter, such as the FC EJ0G or FC EJ0H is installed at the GX++ slot 2
(P1-C8), the PCIe2 LP 4-port 1 Gb Ethernet adapter (FC 5260) has to be installed in
any of the available PCIe x8 Gen2 slots.
IBM i IOPs and PCI-X adapters are not supported in the Power 710 and Power 730
systems.

60
IBM Power 710 and 730 Technical Overview and Introduction
Figure 2-15 lists the PCIe adapter form factors.
Figure 2-15 PCIe adapter form factors
Many of the full-height card features are also available in low profile format. For example, the
PCIe RAID and SSD SAS Adapter 3 Gb is available as a low profile adapter or as a full height
adapter, each one having a different feature code. As expected, they have equivalent
functional characteristics.
Table 2-8 is a list of low-profile adapter cards and their equivalents in full height.
Table 2-8 Equivalent adapter cards
Low profile
Adapter description
Full height
Feature
code
CCIN
Feature
code
CCIN
2053 57CD PCIe RAID and SSD SAS Adapter 3 Gb 2054 or
2055
57CD
5269 5269 PCIe POWER GXT145 Graphics Accelerator 5748 5748
5270 2B3B 10 Gb FCoE PCIe Dual Port adapter 5708 2B3B
5271 5271 4-Port 10/100/1000 Base-TX PCI Express adapter 5717 5271
5272 5272 10 Gigabit Ethernet-CX4 PCI Express adapter 5732 5732
5273 577D 8 Gigabit PCI Express Dual Port Fibre Channel
adapter
5735 577D
5274 5768 2-Port Gigabit Ethernet-SX PCI Express adapter 5768 5768
5275 5275 10 Gb ENet Fibre RNIC PCIe 8x adapter 5769 5275
5276 5774 4 Gigabit PCI Express Dual Port Fibre Channel
adapter
5774 5774
5277 57D2 4-Port Sync EIA-232 PCIe adapter 5785 57D2
5278 57B3 SAS Controller PCIe 8x adapter 5901 57B3
5280 2B44 PCIe2 LP 4-Port 10 Gb Ethernet &1 Gb Ethernet
SR & RJ45 adapter
5744 2B44
Low Profile PCIe Slots
• Power 710 / 730
• Power 720 / 740
- PCIe riser card
Low Profile Full Height Full High
Full High PCIe Slots
• Power 720 / 740 / 750 / 760 / 770 / 780 / 795
• 12X PCIe I/O Drawer
- FC 5802 / FC 5877 for 19-inch rack
- FC 5803 / FC 5873 for 24-inch rack

Chapter 2. Architecture and technical overview
61
Before adding or rearranging adapters, use the System Planning Tool to validate the new
adapter configuration. See the System Planning Tool website:
http://www.ibm.com/systems/support/tools/systemplanningtool/
If you are installing a new feature, ensure that you have the software required to support the
new feature and determine whether there are any existing update prerequisites to install. To
do this, use the IBM prerequisite website:
https://www-912.ibm.com/e_dir/eServerPreReq.nsf
The following sections discuss the supported adapters and provide tables of orderable feature
numbers. The tables indicate operating system support (AIX, IBM i, and Linux) for each of the
adapters.
2.7.3 LAN adapters
To connect the Power 710 and Power 730 to a local area network (LAN), you can use the LAN
adapters that are supported in the PCIe slots of the system unit. Table 2-9 lists the additional
available LAN adapters.
Table 2-9 Available LAN adapters
EN0B 577F PCIe2 16 Gb 2-Port Fibre Channel adapter EN0A 577F
EN0J 2B93 PCIe2 4-Port (10 Gb FCOE & 1 Gb Ethernet)
SR & RJ45 adapter
EN0H 2B93
Support: The Power 710 and Power 730 servers support PCIe low profile adapter only.
However, full height PCIe adapters can be installed in an I/O drawer (FC 5802 and
FC 5877), if attached to the Power 730.
Low profile
Adapter description
Full height
Feature
code
CCIN
Feature
code
CCIN
Feature
code
CCIN
Adapter description
Slot
Size
OS support
5260 576F PCIe2 LP 4-Port 1 Gb Ethernet
adapter
PCIe Low profile AIX, IBM i,
Linux
5271 5271 PCIe LP 4-Port 10/100/1000 Base-TX
Ethernet adapter
PCIe Low profile AIX, Linux
5272 5272 PCIe LP 10 Gb Ethernet CX4 1-Port
adapter
PCIe Low profile AIX, Linux
5274 5768 PCIe LP 2-Port 1 Gb Ethernet SX
adapter
PCIe Low profile AIX, IBM i,
Linux
5275 5275 PCIe LP 10 Gb Ethernet SR 1-Port
adapter
PCIe Low profile AIX, Linux
5279 2B43 PCIe2 LP 4-Port 10 Gb Ethernet &
1 Gb Ethernet SFP+ Copper & RJ45
PCIe Low profile Linux
5280 2B44 PCIe2 LP 4-Port 10 Gb Ethernet &
1 Gb Ethernet SR & RJ45 adapter
PCIe Low profile Linux

62
IBM Power 710 and 730 Technical Overview and Introduction
2.7.4 Graphics accelerator adapters
Table 2-10 lists the available graphics accelerator adapters. The adapter can be configured to
operate in either 8-bit or 24-bit color modes. The adapter supports both analog and digital
monitors.
Table 2-10 Available graphics accelerator adapters
5281 5767 PCIe LP 2-Port 1 Gb Ethernet TX
adapter
PCIe Low profile AIX, IBM i,
Linux
5284 5287 PCIe2 LP 2-Port 10 Gb Ethernet SR
adapter
PCIe Low profile AIX, Linux
5286 5288 PCIe2 LP 2-Port 10 Gb Ethernet
SFP+ Copper adapter
PCIe Low profle AIX, Linux
5717
a
5271 4-Port 10/100/1000 Base-TX PCI
Express adapter
PCIe Full height AIX, Linux
5732
a
5732 10 Gigabit Ethernet-CX4 PCI Express
adapter
PCIe Full height AIX, Linux
5767
a
5767 2-Port 10/100/1000 Base-TX Ethernet
PCI Express adapter
PCIe Full height AIX, IBM i,
Linux
5768
a
5768 2-Port Gigabit Ethernet-SX PCI
Express adapter
PCIe Full height AIX, IBM i,
Linux
5769
a
5769 10 Gigabit Ethernet-SR PCI Express
adapter
PCIe Full height AIX, IBM i,
Linux
5772
a
576E 10 Gigabit Ethernet-LR PCI Express
adapter
PCIe Full height AIX, IBM i,
Linux
5899
a
576F PCIe2 4-Port 1 Gb Ethernet adapter PCIe Full height AIX, IBM i,
Linux
EC27 EC27 PCIe2 LP 2-Port 10 Gb Ethernet
RoCE SFP+ adapter
PCIe Low profile AIX, Linux
EC29 EC27 PCIe2 LP 2-Port 10 Gb Ethernet
RoCE SR adapter
PCIe Low profile AIX, Linux
EN0J 2B93 PCIe2 LP 4-Port (10 Gb FCoE & 1 Gb
Ethernet) SR & RJ45
PCIe Low profile AIX, IBM i,
Linux
a. This full height card is supported only in the Power 730 with a FC 5802 or a FC 5877 drawer.
Feature
code
CCIN
Adapter description
Slot
Size
OS support
Feature
code
CCIN
Adapter description
Slot
Size
OS support
5269 2849 PCIe LP POWER GXT145 Graphics
accelerator
PCIe Low profile AIX, Linux
5748
a
a. This full height card is supported only in the Power 730 with a FC 5802 or a FC 5877 drawer.
5748 POWER GXT145 PCI Express
Graphics accelerator
PCIe Full height AIX, Linux

Chapter 2. Architecture and technical overview
63
2.7.5 SAS adapters
Table 2-11 lists the SAS adapter that is available for Power 710 and Power 730 systems.
Table 2-11 Available SAS adapters
2.7.6 PCIe RAID and SSD SAS adapter
A new SSD option for selected POWER7 and POWER7+ processor-based servers offers a
significant price-for-performance improvement for many client SSD configurations. The SSD
option is packaged differently from those that are currently available with Power Systems. The
PCIe RAID and SSD SAS adapter has up to four 177 GB SSD modules, plugged directly onto
the adapter, saving the need for the SAS bays and cabling that are associated with the
current SSD offering. This PCIe-based SSD offering can save up to 70% of the list price, and
reduce the footprint up to 65%, compared to disk enclosure-based SSD drives, assuming
equivalent capacity. This benefit is dependant on the configuration required.
Figure 2-16 shows the double-wide adapter and SSD modules.
Figure 2-16 The PCIe RAID and SSD SAS adapter, and 177 GB SSD modules
Feature
code
CCIN
Adapter description
Slot
Size
OS support
5278 58B3 PCIe LP Dual-x4-Port SAS adapter
3 Gb
PCIe Low profile AIX, IBM i,
Linux
5805
a
a. This full height card is supported only in the Power 730 with an FC 5802 or FC 5877 drawer.
574E PCIe 380MB Cache Dual - x4 3 Gb
SAS RAID adapter
PCIe Full height AIX, IBM i,
Linux
5901
a
57B3 PCIe Dual-x4 SAS adapter PCIe Full height AIX, IBM i,
Linux
5913
a
57B5 PCIe2 1.8 GB Cache RAID SAS
adapter Tri-port 6 Gb
PCIe Full height AIX, IBM i,
Linux
ESA1
a
57B4 PCIe2 RAID SAS adapter Dual-Port
6 Gb
PCIe Full height AIX, IBM i,
Linux
ESA2 57B4 PCIe2 LP RAID SAS adapter
Dual-Port 6 Gb
PCIe Low profile
Short
AIX, IBM i,
Linux
SAS
Cntrl
177 GB
SSD
177 GB
SSD
177 GB
SSD
177 GB
SSD

64
IBM Power 710 and 730 Technical Overview and Introduction
Table 2-12 shows available RAID and SSD SAS adapters for the Power 710 and Power 730.
Table 2-12 Available PCIe RAID and SSD SAS adapters
The 177 GB SSD module with enterprise multi-level cell (eMLC) uses an enterprise-class
MLC flash technology, which provides enhanced durability, capacity, and performance. One,
two, or four modules can be plugged onto a PCIe RAID and SSD SAS adapter, providing up
to 708 GB of SSD capacity on one PCIe adapter.
Because the SSD modules are mounted on the adapter, to service either the adapter or one
of the modules, the entire adapter must be removed from the system.
Under AIX and Linux, the 177 GB modules can be reformatted as JBOD disks, providing
200 GB of available disk space. This way removes RAID error correcting information, so the
best approach to prevent data loss in case of failure is to mirror the data by using operating
system tools.
2.7.7 Fibre Channel adapters
The systems support direct or SAN connection to devices that use Fibre Channel adapters.
Table 2-13 summarizes the available Fibre Channel adapters, which all have LC connectors.
If you are attaching a device or switch with an SC type fiber connector, then an LC-SC 50
Micron Fiber Converter Cable (FC 2456) or an LC-SC 62.5 Micron Fiber Converter Cable
(FC 2459) is required.
Table 2-13 Available Fibre Channel adapters
Feature
code
CCIN
Adapter description
Slot
Size
OS support
2053 57CD PCIe LP RAID & SSD SAS adapter
3 Gb
PCIe Low profile
double-wide,
short
AIX, IBM i,
Linux
2055
a
a. This full height card is supported only in the Power 730 with an FC 5802 or FC 5877 drawer.
57CD PCIe RAID & SSD SAS adapter 3 Gb
with Blind Swap Cassette
PCIe Full height AIX, IBM i,
Linux
Feature
code
CCIN
Adapter description
Slot
Size
OS support
5273 577D PCIe LP 8 Gb 2-Port Fibre Channel
adapter
PCIe Low profile
Short
AIX, IBM i,
Linux
5276 5774 PCIe LP 4 Gb 2-Port Fibre Channel
adapter
PCIe Low profile
Short
AIX, IBM i,
Linux
5735
a
577D 8 Gigabit PCI Express Dual Port
Fibre Channel adapter
PCIe Full height
Short
AIX, IBM i,
Linux
5773
a
5773 4 Gigabit PCI Express Single Port
Fibre Channel adapter
PCIe Full height AIX, Linux
5774
a
5774 4 Gigabit PCI Express Dual Port
Fibre Channel adapter
PCIe Full height AIX, Linux

Chapter 2. Architecture and technical overview
65
2.7.8 Fibre Channel over Ethernet
Fibre Channel over Ethernet (FCoE) allows for the convergence of Fibre Channel and
Ethernet traffic onto a single adapter and a converged fabric.
Figure 2-17 compares existing Fibre Channel and network connections and FCoE
connections.
Figure 2-17 Comparison between existing Fibre Channel and network connection and FCoE connection
Table 2-14 lists the available Fibre Channel over Ethernet Adapter. It is a high-performance,
Converged Network Adapter (CNA) using SR optics. Each port can simultaneously provide
network interface card (NIC) traffic and Fibre Channel functions.
Table 2-14 Available FCoE adapters
For more information about FCoE, read An Introduction to Fibre Channel over Ethernet, and
Fibre Channel over Convergence Enhanced Ethernet, REDP-4493.
EN0Y EN0Y PCIe2 LP 8 Gb 4-Port Fibre
Channel adapter
PCIe Low profile
Short
AIX, IBM i,
Linux
EN0B 577D PCIe2 LP 16 Gb 2-Port Fibre
Channel adapter
PCIe Low profile AIX, IBM i,
Linux
a. This full height card is only supported in the Power 730 with a FC 5802 or a FC 5877 drawer.
NPIV: The use of N_Port ID Virtualization (NPIV) through the Virtual I/O server requires an
NPIV-capable Fibre Channel adapter, such as the FC 5273, FC 5735, and FC EN0B.
Feature
code
CCIN
Adapter description
Slot
Size
OS support
Ethernet
and Fibre
Channel
Cables
Ethernet
Cable
Fibre Channel
Cable
FC Switch
Ethernet Switch
CEC or I/O Drawer
Ethernet
CEC or I/O Drawer
FC
Rack
Fibre Channel (FC)
Device or FC Switch
Ethernet
Cables
Ethernet
Cable
Fibre Channel
Cable
FCoE Switch
CEC or I/O Drawer
Rack
Fibre Channel (FC)
Device or FC Switch
FCoE
Ethernet Device/
Switch
Ethernet Device/
Switch or FCoE
Device/Switch
Feature
code
CCIN
Adapter description
Slot
Size
OS support
5270 2B3B PCIe LP 10 Gb FCoE 2-Port
adapter
PCIe Low profile
Short
AIX, Linux
EN0J 2B93 PCIe2 LP 4-Port (10 Gb FCoE &
1 Gb Ethernet) SR & RJ45 adapter
PCIe Low profile AIX, IBM i,
Linux

66
IBM Power 710 and 730 Technical Overview and Introduction
2.7.9 InfiniBand Host Channel adapter
The InfiniBand Architecture (IBA) is an industry-standard architecture for server I/O and
inter-server communication. It was developed by the InfiniBand Trade Association (IBTA) to
provide the levels of reliability, availability, performance, and scalability necessary for present
and future server systems with levels significantly better than can be achieved using
bus-oriented I/O structures.
InfiniBand (IB) is an open set of interconnect standards and specifications. The main IB
specification is published by the InfiniBand Trade Association and is available at:
http://www.infinibandta.org/
InfiniBand is based on a switched fabric architecture of serial point-to-point links, where these
IB links can be connected to either host channel adapters (HCAs), used primarily in servers,
or target channel adapters (TCAs), used primarily in storage subsystems.
The InfiniBand physical connection consists of multiple byte lanes. Each individual byte lane
is a four-wire, 2.5, 5.0, or 10.0 Gbps bidirectional connection. Combinations of link width and
byte lane speed allow for overall link speeds from 2.5 Gbps to 120 Gbps. The architecture
defines a layered hardware protocol and also a software layer to manage initialization and the
communication between devices. Each link can support multiple transport services for
reliability and multiple prioritized virtual communication channels.
For more information about InfiniBand, see HPC Clusters Using InfiniBand on IBM Power
Systems Servers, SG24-7767.
The GX++ Dual-port 12X Channel Attach adapter (FC EJ0G) provides two 12X connections
for 12X Channel applications. One adapter must be installed in GX++ bus slot 2 and will cover
one adjacent PCIe x8 G2 slot 5. The 12X Channel is connected in a loop and uses both
connectors on the adapters. Up to two I/O drawers can be attached in a single loop. This
adapter must be used with the 12X cables.
A connection to supported InfiniBand switches is accomplished by using the 12x to 4x
Channel Conversion Cables, FC 1828, FC 1841, or FC 1842.
Table 2-15 lists the available InfiniBand adapters.
Table 2-15 Available InfiniBand adapters
Feature
code
CCIN
Adapter description
Slot
Size
OS support
5283 PCIe2 LP Dual-Port 4X IB QDR
adapter 40 Gb
PCIe Low profile
Short
AIX, Linux
EJ0G
a
a. FC EJ0G is not available for the Power 710 server.
GX++ Dual-Port 12X Channel
Attach adapter
GX++
PCIe
AIX, Linux

Chapter 2. Architecture and technical overview
67
2.7.10 Asynchronous and USB adapters
Asynchronous PCIe adapters provide connection of asynchronous EIA-232 or RS-422
devices. If you have a cluster configuration or high-availability configuration and plan to
connect the IBM Power Systems using a serial connection, you can use the features listed in
Table 2-16.
Table 2-16 Available asynchronous adapters
2.7.11 Cryptographic coprocessor
The cryptographic coprocessor cards provide both cryptographic coprocessor and
cryptographic accelerator functions in a single card.
The IBM PCIe Cryptographic Coprocessor adapter highlights the following features:
Integrated Dual processors that operate in parallel for higher reliability
Supports IBM Common Cryptographic Architecture or PKCS#11 standard
Ability to configure adapter as coprocessor or accelerator
Support for smart card applications that use Europay, MasterCard and Visa
Cryptographic key generation and random number generation
PIN processing; generation, verification, translation
Encrypt and decrypt by using AES and DES keys
See the following location for the latest firmware and software updates:
http://www.ibm.com/security/cryptocards/
Table 2-17 lists the cryptographic adapter that is available for the server.
Table 2-17 Available cryptographic adapters
Feature
code
CCIN
Adapter description
Slot
Size
OS support
2728
a
a. This full height card is supported only in the Power 730 with a FC 5802 or a FC 5877 drawer.
57D1 4-Port USB PCIe adapter PCIe Full height AIX, Linux
5277 57D2 PCIe LP 4-Port Async EIA-232
adapter
PCIe Low profile
Short
AIX, Linux
5290 57D4 PCIe LP 2-Port Async EIA-232
adapter
PCIe Low profile
Short
AIX, Linux
5785
a
57D2 4-Port Async EIA-232 PCIe adapter PCIe Full height AIX
Feature
code
CCIN
Adapter description
Slot
Size
OS
support
4808
a
a. This full height card is supported only in the Power 730 with a FC 5802 or a FC 5877 drawer.
4765 PCIe Crypto Coprocessor with
GEN3 Blindswap Cassette
4765-001
PCIe Full height AIX, IBM i,
Linux

68
IBM Power 710 and 730 Technical Overview and Introduction
2.8 Internal storage
The Power 710 and Power 730 servers use an integrated SAS/SATA controller connected
through a PCIe bus to the P7IOC chip supporting RAID 0, 1, and 10 (see Figure 2-18). The
SAS/SATA controller in the server’s enclosure has two sets of four SAS/SATA channels, which
give the Power 710 and Power 730 systems the combined total of eight SAS buses. Each
channel can support either SAS or SATA operation. The SAS controller is connected to a
DASD backplane and supports three or six small form factor (SFF) disk drive bays, depending
on the backplane option.
One of the following options must be selected as the backplane:
FC EJ0E supports three SFF disk units, either HDD or SSD, an SATA DVD, and a tape
(FC 5762 or follow on). There is no support for split backplane and RAID 5 and 6.
FC EJ0D supports six SFF disk units, either HDD or SSD, and a SATA DVD. There is no
support for split backplane and RAID 5 and 6.
FC EJ0F supports six SFF disk units, either HDD or SSD, a SATA DVD, a Dual Write
Cache RAID, and an external SAS port. HDDs/SSDs are hot-swap and front accessible.
Split backplane is not supported. RAID levels 5 and 6 are supported. This feature is
required when IBM i is the primary operating system (FC 2145).
The supported disk drives in a Power 710 and Power 730 server connect to the DASD
backplane and are hot-swap and front-accessible.
Figure 2-18 details the internal topology overview for the FC EJ0E backplane.
Figure 2-18 Internal topology overview for FC EJ0E DASD backplane
IBM i: Feature FC EJ0E is not supported with IBM i.
Tape Drive
Disk #3
Disk #2
Disk #1
Slim DVD
Integrated
SAS Adapter
P7IOC

Chapter 2. Architecture and technical overview
69
Figure 2-19 shows the internal topology overview for the FC EJ0D backplane.
Figure 2-19 Internal topology overview for the FC EJ0D DASD backplane
Figure 2-20 shows the details of the internal topology overview for the FC 5268 backplane.
Figure 2-20 Internal topology overview for the FC EJ0F DASD backplane
Disk #6
Disk #5
Disk #4
Disk #3
Disk #2
Disk #1
Slim DVD
Integrated
SAS Adapter
P7IOC
Disk #6
Disk #5
Disk #4
Disk #3
Disk #2
Disk #1
Slim DVD
Integrated
SAS Adapter
P7IOC
Battery
Backup
External SAS Port

70
IBM Power 710 and 730 Technical Overview and Introduction
2.8.1 RAID support
There are multiple protection options for HDD/SSD drives in the Power 710 and Power 730
systems, whether they are contained in the SAS SFF bays in the system unit, in a 12X
attached I/O drawer, or drives in disk-only I/O drawers. Although protecting drives is always
recommended, AIX/Linux users can choose to leave a few or all drives unprotected at their
own risk, and IBM supports these configurations. IBM i configuration rules differ in this regard,
and IBM supports IBM i partition configurations only when HDD/SSD drives are protected.
Drive protection
HDD/SSD drive protection can be provided by the AIX, IBM i, and Linux operating system, or
by the HDD/SSD hardware controllers. Mirroring of drives is provided by the AIX, IBM i, and
Linux operating system. In addition, AIX and Linux support controllers providing RAID 0, 1, 5,
6, or 10. The integrated storage management of IBM i already provides striping. IBM i also
supports controllers that provide RAID 5 or 6. To further augment HDD/SSD protection,
hot-spare capability can be used for protected drives. Specific hot-spare prerequisites apply.
An integrated SAS HDD/SSD controller is in the Power 710 and Power 730 system unit and
provides support for JBOD and RAID 0, 1, and 10 for AIX or Linux. It is optionally augmented
by RAID 5 and RAID 6 capability when storage backplane FC EJ0F is added to the
configuration. In addition to these protection options, mirroring of drives by the operating
system is supported. AIX or Linux supports all of these options. IBM i does not use
unprotected disks and uses embedded functions instead of RAID 10. IBM i does use the
RAID 5 or 6 function of the integrated controllers.
Table 2-18 lists the RAID support by backplane.
Table 2-18 RAID support configurations
AIX and Linux can use disk drives that are formatted with 512-byte blocks when being
mirrored by the operating system. These disk drives must be reformatted to 528-byte sectors
when used in RAID arrays. Although a small percentage of the drive's capacity is lost,
additional data protection such as ECC and bad block detection is gained in this reformatting.
For example, a 300 GB disk drive, when reformatted, provides approximately 283 GB. IBM i
always uses drives that are formatted to 528 bytes. Solid-state drives are always formatted
with 528 byte sectors.
The Power 710 and Power 730 support a dual-write cache RAID feature that consists of an
auxiliary write cache for the RAID card and the optional RAID enablement.
Storage
backplane
JBOD
RAID 0, 1,
and 10
RAID 5 and 6
Split
backplane
External SAS
port
FC EJ0D Yes Yes No No No
FC EJ0E Yes Yes No No No
FC EJ0F No Yes Yes No Yes

Chapter 2. Architecture and technical overview
71
Supported RAID functions
Base hardware supports RAID 0, 1, and 10. When additional features are configured,
Power 710 and Power 730 support hardware RAID 0, 1, 5, 6, and 10:
RAID 0 provides striping for performance, but does not offer any fault tolerance.
The failure of a single drive results in the loss of all data on the array. This version of RAID
increases I/O bandwidth by simultaneously accessing multiple data paths.
RAID 1 mirrors the contents of the disks. The contents of each disk in the array are
identical to that of every other disk in the array, providing data resilience in the case of a
drive failure.
RAID 5 uses block-level data striping with distributed parity.
RAID RAID 5 stripes both data and parity information across three or more drives. Fault
tolerance is maintained by ensuring that the parity information for any given block of data
is placed on a drive separate from those used to store the data itself. This version of RAID
provides data resiliency in the case of a single drive failing in a RAID 5 array.
RAID 6 uses block-level data striping with dual distributed parity.
RAID 6 is the same as RAID 5 except that it uses a second level of independently
calculated and distributed parity information for additional fault tolerance. RAID 6
configuration requires N+2 drives to accommodate the additional parity data, making it
less cost effective than RAID 5 for equivalent storage capacity. This version of RAID
provides data resiliency in the case of one or two drives failing in a RAID 6 array.
RAID 10 is also known as a striped set of mirrored arrays.
It is a combination of RAID 0 and RAID 1. A RAID 0 stripe set of the data is created across
a two-disk array for performance benefits. A duplicate of the first stripe set is then mirrored
on another two-disk array for fault tolerance. This version of RAID provides data resiliency
in the case of a single drive failure and may provide resiliency for multiple drive failures.
2.8.2 External SAS port
The Power 710 and Power 730 DASD backplane (FC EJ0F) offers a connection to an external
SAS port:
The SAS port connector is located next to the GX++ slot 2 on the rear bulkhead.
The external SAS port is used for expansion to external SAS devices or drawer such as
the EXP12S SAS Drawer (FC 5886), the EXP24S SFF Gen2-bay Drawer (FC 5887), and
the IBM System Storage 7214 Tape and DVD Enclosure Express (Model 1U2).
2.8.3 Media bays
The Power 710 and Power 730 each have a slim media bay that contains an optional
DVD-RAM (FC 5762) and a tape bay (available only with FC EJ0E) that can contain a tape
drive or removable disk drive. Direct dock and hot-plug of the DVD media device is supported.
The DVD drive and media device do not have an independent SAS adapter and so cannot be
assigned to an LPAR independently of the HDD/SSDs in the system.
Note: Only one SAS drawer is supported from the external SAS port. Additional SAS
drawers can be supported through SAS adapters. SSDs are not supported on the SAS
drawer connected to the external port.

72
IBM Power 710 and 730 Technical Overview and Introduction
2.9 External I/O subsystems
The Power 730 server supports the attachment of I/O drawers. Two of the following I/O
drawers can be attached to the system unit, providing extensive capability to expand the
overall server:
12X I/O Drawer PCIe, small form factor (SFF) disk (FC 5802)
12X I/O Drawer PCIe, No Disk (FC 5877)
Each processor card feeds one GX++ adapter slot. Two GX++ slots are available in the
Power 730.
The Power 730 uses the GX++ Dual-port 12x Channel Attach (FC EJ0G) adapter to attach a
FC 5802 or FC 5877 12X I/O Drawer. The FC EJ0G provides double data rate (DDR)
capacity bandwidth.
Table 2-19 is an overview of the capabilities of the supported I/O drawers.
Table 2-19 I/O drawer capabilities
2.9.1 12X I/O Drawer PCIe
The 12X I/O Drawer PCIe, SFF disk (FC 5802) is a 19-inch I/O and storage drawer. It
provides a 4U (EIA units) drawer, containing 10 PCIe-based I/O adapter slots and 18 SAS
hot-swap small form factor (SFF) disk bays, which can be used for either disk drives or SSD
drives. Using 900 GB disk drives, each I/O drawer provides up to 16.2 TB of storage. The
adapter slots within the I/O drawer use Gen3 blind swap cassettes and support hot-plugging
of adapter cards. The 12X I/O Drawer PCIe, No Disk (FC 5877) is the same as FC 5802
except that it does not support any disk bays.
A maximum of two 12X I/O Drawer PCIe, SFF disk drawers can be placed on the same 12X
loop. Within the same loop, FC 5877 and FC 5802 can be mixed. An upgrade from a diskless
FC 5877 to FC 5802 with disk bays is not available.
A minimum configuration of two 12X DDR cables, two AC power cables, and two SPCN
cables is required to ensure proper redundancy. The drawer attaches to the system unit with a
12X adapter in a GX++ slot through 12X DDR cables that are available in the following cable
lengths:
0.6 meters 12X DDR Cable (FC 1861)
1.5 meters 12X DDR Cable (FC 1862)
3.0 meters 12X DDR Cable (FC 1865)
8.0 meters 12X DDR Cable (FC 1864)
Feature code
Disk drive bays
PCI slots
Requirements for
Power 710 and Power 730
5802 18 SAS hot-swap
disk drive bays
10 PCIe GX++ Dual-port 12x Channel Attach (FC EJ0G)
5877 None 10 PCIe GX++ Dual-port 12x Channel Attach (FC EJ0G)
Unsupported: The attachment of external I/O drawers is not supported on the Power 710.
Unsupported: The 12X SDR cables are not supported.

Chapter 2. Architecture and technical overview
73
The physical dimensions of the drawer measure 444.5 mm (17.5 in.) wide, by
177.8 mm (7.0 in.) high, by 711.2 mm (28.0 in.) deep for use in a 19-inch rack.
Figure 2-21 shows the front view of the 12X I/O Drawer PCIe (FC 5802).
Figure 2-21 Front view of the 12X I/O Drawer PCIe
Figure 2-22 shows the rear view of the 12X I/O Drawer PCIe (FC 5802).
Figure 2-22
Rear view of the 12X I/O Drawer PCIe
Disk drives Service card Port cards
Power cables
10 PCIe cards X2 SAS connectors
12X connectors Mode switch
SPCN connectors

74
IBM Power 710 and 730 Technical Overview and Introduction
2.9.2 12X I/O Drawer PCIe configuration and cabling rules
The following sections describe the disk drive configuration, 12X loop, and SPCN cabling
rules.
Configuring the disk drive subsystem of the FC 5802 drawer
The 12X I/O Drawer PCIe, SFF disk drawer (FC 5802) can hold up 18 disk drives. The disks
in this enclosure can be organized in various configurations depending on the operating
system used, the type of SAS adapter card, and the position of the mode switch.
Each disk bay set can be attached to its own controller or adapter. Feature PCIe 12X I/O
drawer has four SAS connections to drive bays. It connects to PCIe SAS adapters or
controllers on the host systems.
Disk drive bays in the 12X I/O drawer PCIe can be configured as one, two, or four sets. This
way allows for partitioning of disk bays. Disk bay partitioning configuration can be done with
the physical mode switch on the I/O drawer.
Figure 2-23 indicates the mode switch in the rear view of the FC 5802 I/O Drawer and shows
the configuration rules of disk bay partitioning in the PCIe 12X I/O drawer. There is no specific
feature code for mode switch setting.
Figure 2-23 Disk bay partitioning configuration in 12X I/O Drawer PCI (FC 5802)
Remember: A mode change, using the physical mode switch, requires the drawer to be
powered off and then on.
Tools and CSP: The IBM System Planning Tool supports disk bay partitioning. Also, the
IBM configuration tool accepts this configuration from IBM System Planning Tool and
passes it through IBM manufacturing by using the Customer Specified Placement (CSP)
option.
MODE
SWITCH
1
2
4
FC 5802 12X I/O Drawer
AIX/Linux
• One set:18 bays
• Two sets:9 + 9 bays
• Four sets:5 + 4 + 5 + 4 bays
IBM i
• Two sets: 9 + 9 bays
PCIe 12X I/O Drawer – SFF Drive Bays

Chapter 2. Architecture and technical overview
75
The location codes for the front and rear views of the FC 5802 I/O drawer are provided in
Figure 2-24 and Figure 2-25.
Figure 2-24 FC 5802 I/O drawer from view location codes
Figure 2-25 FC 5802 I/O drawer rear view location codes
P3-D1
P3-D2
P3-D3
P3-D4
P3-D5
P3-D6
P3-D7
P3-C1
P3-C2
P3-D8
P3-D9
P3-D10
P3-D11
P3-C3
P3-C4
P3-D12
P3-D13
P3-D14
P3-D15
P3-D16
P3-D17
P3-D18
E1
E2
ARECW500-0
P1-C1
P1-C2
P1-C3
P1-C4
P1-T2
P1-C5
P1-C6
P1-C7
P1-C8
P1-C9
P1-C10
P4-T5
P2-T1
P2-T2
P2-T3
ARECW501-0
P4-T1
P4-T2
P4-T3
P4-T4
P1-T1

76
IBM Power 710 and 730 Technical Overview and Introduction
Table 2-20 lists the SAS ports that are associated to the disk bays with the mode selector
switch 4.
Table 2-20 SAS connection mappings
For more detailed information about cabling and other switch modes, see the Power Systems
Enclosures and expansion units publication:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/topic/ipham/ipham.pdf
12X I/O Drawer PCIe loop
Any I/O drawer is connected to the adapters in the Power 730 system unit with data transfer
cables such as the 12X DDR cables for the FC 5802 and FC 5877 I/O drawers.
The first 12X I/O drawer that is attached to the I/O drawer loop requires two data transfer
cables. An additional second drawer requires one additional data transfer cable. Consider the
following information about the loop:
A 12X I/O loop starts at a system unit adapter port 0 and attaches to port 0 of the first
I/O drawer.
The I/O drawer attaches from port 1 of the first unit to port 0 of the second I/O drawer.
Port 1 of the second I/O drawer on the 12X I/O loop connects to port 1 of the system unit
adapter to complete the loop.
Figure 2-26 shows typical 12X I/O loop port connections.
Figure 2-26 Typical 12X I/O loop port connections
Table 2-21 lists 12X cables to satisfy the various length requirements.
Table 2-21 12X connection cables
Location code
Mappings
Number of bays
P4-T1 P3-D1 to P3-D5 5 bays
P4-T2 P3-D6 to P3-D9 4 bays
P4-T3 P3-D10 to P3-D14 5 bays
P4-T4 P3-D15 to P3-D18 4 bays
Feature code
Description
1861 0.6 meter 12X DDR cable
1862 1.5 meter 12X DDR cable
1865 3.0 meter 12X DDR cable
1864 8.0 meter 12X DDR cable
I/O
I/O
1 0
I/O
10
730
0
1

Chapter 2. Architecture and technical overview
77
12X I/O Drawer PCIe SPCN cabling
System Power Control Network (SPCN) is used to control and monitor the status of power
and cooling within the I/O drawer.
SPCN cables connect all AC powered expansion units. Figure 2-27 shows an example for a
Power 730 that connects to two I/O drawers. Other connections options are available.
1.Start at SPCN 0 (T1) of the Power 730 system unit to J15 (T1) of the first I/O drawer.
2.Cable all units from J16 (T2) of the first I/O drawer to J15 (T1) of the second I/O drawer.
3.To complete the cabling loop, from J16 (T2) of the second I/O drawer, connect to the
system unit SPCN 1 (T2).
4.Ensure that a complete loop exists from the system unit, through all attached expansions
and back to the system unit.
Figure 2-27 SPCN cabling example
Various SPCN cables are available. Table 2-22 lists available SPCN cables options to satisfy
various length requirements.
Table 2-22 SPCN cables
Feature code
Description
6001
a
Power Control Cable (SPCN) - 2 meter
6006 Power Control Cable (SPCN) - 3 meter
6008
a
a. Supported, but no longer orderable
Power Control Cable (SPCN) - 6 meter
6007 Power Control Cable (SPCN) - 15 meter
6029
a
Power Control Cable (SPCN) - 30 meter
I/O drawer
J15
J16
I/Odrawer
J15
J16
Power 730
system unit
1
0

78
IBM Power 710 and 730 Technical Overview and Introduction
2.10 External disk subsystems
This section describes the following external disk subsystems that can be attached to the
Power 710 and Power 730:
EXP30 Ultra SSD I/O drawer (FC EDR1, CCIN 57C3)
EXP24S SFF Gen2-bay drawer for high-density storage (FC 5887)
EXP12S SAS expansion drawer (FC 5886)
IBM System Storage
Later sections give you detailed information about the various external disk subsystems.
2.10.1 EXP30 Ultra SSD I/O drawer
The EXP30 Ultra SSD I/O drawer (FC EDR1) is a 1U high I/O drawer that provides 30
hot-swap SSD bays and a pair of integrated large write caches, high-performance SAS
controllers without using any PCIe slots on the POWER7+ server. The two high performance,
integrated SAS controllers each physically provide 3.1 GB write cache. Working as a pair,
they provide mirrored write-cache data and controller redundancy. The cache contents are
designed to be protected by built-in flash memory in case of power failure. If the pairing is
broken, write cache is not used after existing cache content is written out to the drive, and
performance will probably be slowed until the controller pairing is established again.
Figure 2-28 shows the front view of the EXP30 drawer.
Figure 2-28 Front view of the EXP30 Ultra SSD I/O drawer
Each controller is connected to a GX++ LP 1-port PCIe2 x8 adapter (FC EJ0H CCIN 2C1F) in
a Power 710 and Power 730 server over a PCIe x8 cable. Usually both controllers are
attached to one server, but each controller can be assigned to a separate server, or a logical
partition.

Chapter 2. Architecture and technical overview
79
Table 2-23 lists the RAID levels for the AIX, IBM i, Linux operating systems that the controller
supports.
Table 2-23 Supported RAID levels
The EXP30 Ultra SSD I/O drawer (FC EDR1) delivers up to 480,000 IOPS (read only), up to
410,000 IOPS (60% read and 40% write), or up to 325,000 IOPS (100% write) and has up to
30% performance improvement over the previous version of the EXP30 (FC 5888).
Table 2-24 lists the quantity of EXP30 drawers that can be attached to the Power 710 and
Power 730, running separate operating systems.
Table 2-24 Quantity of EXP30 attachments
Disks
The 387 GB SSD (FC ES02 and FC ES04) used in the EXP30 Ultra SSD I/O drawer uses
high-performance, industrial-strength eMLC technology. These SSDs are packaged as
1.8-inch SAS drives, which can be added to or removed concurrently while the drawer is
in use.
A minimum of six SSDs are required in each Ultra drawer. Each controller can access all 30
SSD bays. The bays can be configured as one set of bays that is run by a pair of controllers
that are working together. Alternatively the bays can be divided into two logical sets, where
each of the two controllers owns one of the logical sets. With proper software, if one of the
controller fails, the other controller can run both sets of bays.
FC ES02 and FC ES04 are identical SSD drives, but have separate feature codes for use with
the AIX, IBM i, and Linux operating systems. FC ES02 is used for AIX and Linux; FC ES04 is
used for IBM i.
RAID level
Operating system
RAID 0 AIX, Linux
RAID 1
a
a. Provided by the operating system Logical Volume Manager (LVM)
AIX, IBMi, Linux
RAID 5 AIX, IBMi, Linux
RAID 6 AIX, IBMi, Linux
RAID 10 AIX, Linux
System
AIX
IBMi
Linux
Power 710 One half of the EXP30 drawer - One half of the EXP30 drawer
Power 730 One One
a
a. At the time of writing, only one EXP30 drawer is supported when using the IBM i operating
system
One
Unsupported: The 387 GB 1.8" SAS SSD for IBM i with eMLC (FC ES04) is not
supported with the Power 710.

80
IBM Power 710 and 730 Technical Overview and Introduction
EXP30 connection to a Power Systems server
The GX++ LP 1-Port PCIe2 x8 adapter (FC EJ0H, CCIN 2C1F) enables the attachment of the
EXP30 Ultra SSD I/O Drawer. The adapter is plugged into a GX++ slot of the 2U Power 710
or Power 730. Up to one PCIe cable connects the drawer to the GX++ 1-Port adapter.
The following cable lengths are available to connect a drawer with a GX++ LP 1-Port
PCIe2 x8 adapter.
1.5 meters (FC EN05)
3 meters (FC EN07)
When connecting one EXP30 drawer to a Power 710 server, only one half of the EXP30 can
be connected to the GX++ LP 1-Port PCIe2 x8 adapter. The second half of the EXP30 must
be connected to another GX++ LP 1-Port PCIe2 x8 adapter in a different server: either a
Power 710, Power 720, Power 730, Power 740, Power 750, Power 760, Power 770, or
Power 780 server.
Figure 2-29 shows two examples for a supported solution. The top example shows
connecting both Power 710 systems to an EXP30 drawer; the bottom example shows
connecting a Power 710 and a Power 750 to an EXP30 drawer.
Figure 2-29 Connection between Power 710, an FC EDR1 drawer and a Power 750 server
Power 750
Power 710
Power 710
Power 710
ERM - C1
T1
T3
ERM - C2
PSU
P2
FC EDR1
FC EJ0H
T1
8X
T3
PSU
P1
T2
T1
T2
PCIe Gen2 8X cables
FC EJ0H
T1
8X
ERM - C1
T1
T3
ERM - C2
PSU
P2
FC EDR1
FC EJ0H
T1
8X
T3
PSU
P1
T2
T1
T2
PCIe Gen2 8X cables
FC 1914
T1
8X

Chapter 2. Architecture and technical overview
81
Figure 2-30 shows a Power 730, using two GX++ LP 1-Port PCIe2 x8 adapters, connected to
an EXP30 drawer.
Figure 2-30 Connection to EXP30 drawer
EXP30 drawer connection to EXP24S drawer
Two EXP24S disk drawers (FC 5887) can be directly attached to an EXP30 (FC EDR1)
drawer, running AIX, IBM i, and Linux. Up to 48 additional SAS disks enhance the disk
capacity up to 43.2 TB. This combination (one EXP30 Ultra Drawer and two EXP24S
drawers) provides a maximum capacity of 54.8 TB capacity.
Use both T1 connector locations of the EXP30 drawer to connect an EX SAS cable to the two
T1 connector locations of the first EXP24S drawer. If you want to attach a second EXP24S
drawer, connect both T2 connector locations of the EXP30 drawer with the two T1 connector
locations of the second EXP24S drawer.
Power 730
PCIe Gen2 8X cable
ERM - C1
T1
ERM - C2
PSU
P2
FC EDR1
PSU
P1
T2
T1
T2
T3
T3
FC EJ0H
T1
8X
FC EJ0H
T1
8X
PCIe Gen2 8X cable
Support:
IBM i 7.1 TR6 also supports attaching downstream EXP24S drives, but has a maximum
of one downstream EXP24S drawer and therefore a maximum of up to 24 additional
SAS disks.
The previous model of the EXP30 drawer (FC 5888) does not support the attachment of
an EXP24S drawer.

82
IBM Power 710 and 730 Technical Overview and Introduction
Figure 2-31 shows two EXP24S drawers that are connected to one EXP30 drawer.
Figure 2-31 FC EDR1 drawer connection to two FC 5887 drawers
More information about the EXP30 Ultra SSD I/O drawer is at the following location:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/p7ham/p7ham_edr
1_kickoff.htm
2.10.2 EXP24S SFF Gen2-bay drawer
The EXP24S SFF Gen2-bay drawer (FC 5887) is an expansion drawer that supports up to 24
hot-swap 2.5-inch SFF SAS HDDs on POWER6, POWER6+, POWER7, or POWER7+ server
in 2U of 19-inch rack space.
The SFF bays of the EXP24S drawer differ from the SFF bays of the POWER7 or POWER7+
system unit or of the 12X PCIe I/O Drawers (FC 5802 or FC 5803). The EXP24S uses Gen2
or SFF-2 SAS drives that physically do not fit in the Gen1 or SFF-1 bays of the POWER7 or
POWER7+ system unit, or of the 12X PCIe I/O Drawers.
The drawer can be attached to the Power 710 and Power 730 by either using the FC EJ0F
storage backplane, providing an external SAS port, or using these PCIe SAS adapters or pair
of adapters:
PCIe LP 2-x4-Port SAS Adapter 3 Gb (FC 5278, CCIN 57B3)
PCIe2 RAID SAS adapter Dual-Port 6 Gb (FC ESA2, CCIN 57B4)
ERM - C1
PSU
P2
FC EDR1
PSU
P1
T2
T3
ERM - C2
T2
T3
PSU
P1
ERM - C1
T2
T3
ERM - C2
T2
T3
PSU
P2
Second FC 5887 drawer
* SSDs only
* HDDs only
* HDDs only
PSU
P1
ERM - C1
ERM - C2
PSU
P2
First FC 5887 drawer
EX SAS Cables
EX SAS Cables
T1
T2
T3
T2
T3
T1
T1
T1
T1
T1

Chapter 2. Architecture and technical overview
83
In addition, the EXP24S drawer can also be connected to the integrated SAS controllers in
the EXP30 Ultra SSD I/O drawer. The SAS controller and the EXP24S SAS ports are
attached by using the appropriate SAS Y or X or EX cables.
The SAS disk drives that are contained in the EXP24S drawer are controlled by one or two
PCIe SAS adapters that are connected to the EXP24S through SAS cables. The SAS cable
varies, depending on the adapter being used, the operating system being used, and the
protection wanted.
In addition to the existing SAS disks options, IBM offers the following disk models:
900 GB 10K RPM SAS HDD in Gen-2 Carrier for AIX and Linux (FC 1752)
856 GB 10K RPM SAS HDD in Gen-2 Carrier for IBM i (FC 1738)
The EXP24S can be ordered in one of three possible manufacturing-configured mode
settings (not customer set-up): 1, 2, or 4 sets of disk bays.
With IBM AIX, and Linux, the EXP24S drawer can be ordered with four sets of six bays
(mode 4), two sets of 12 bays (mode 2), or one set of 24 bays (mode 1). With IBM i the
EXP24S drawer can be ordered as one set of 24 bays (mode 1).
Six SAS connectors are at the rear of the EXP24S drawer, to which the SAS adapters or
controllers are attached. They are labeled T1, T2, and T3; there are two T1, two T2, and two
T3 (Figure 2-32 on page 84):
In mode 1, two or four of the six ports are used. Two T2 are used for a single SAS
adapter,and two T2 and two T3 are used with a paired set of two adapters or dual
adapters configuration.
In mode 2 or mode 4, four ports will be used, two T2 and two T3, to access all SAS bays.
Notes:
A single FC 5887 drawer can be cabled to the CEC external SAS port when an
FC EJ0F DASD backplane is part of the system. A 3 Gbps YI cable (FC 3686 or
FC 3687) is used to connect an FC 5887 to the CEC external SAS port.
A single FC 5887 is not allowed to attach to the CEC external SAS port when an
FC EPCE processor (4-core) is ordered or installed on a single socket Power 710
system.
Notes:
The modes for the EXP24S drawer are set by IBM manufacturing. There is no reset
option after the drawer is shipped.
If you order multiple EXP24S drawers, avoid mixing modes within that order. There is
no externally visible indicator regarding the drawer’s mode.
Several EXP24S drawers cannot be cascaded on the external SAS connector. Only one
FC 5887 is supported.
The Power 710 and Power 730 support up to four EXP24S drawers.

84
IBM Power 710 and 730 Technical Overview and Introduction
Figure 2-32 EXP24S SFF Gen2-bay drawer rear connectors
An EXP24S drawer in mode 4 can be attached to two or four SAS controllers and provide a
high level of configuration flexibility. An EXP24S in mode 2 has similar flexibility. Up to
24 HDDs can be supported with any of the supported SAS adapters and controllers.
The EXP24S no-charge specify codes must be included with any EXP24S orders to indicate
to IBM manufacturing the mode to which the drawer should be set and the adapter, controller,
and cable configuration that will be used.
For details about the SAS cabling, see the serial-attached SCSI cable planning
documentation:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/p7had/p7hadsasc
abling.htm
2.10.3 EXP12S SAS expansion drawer
The EXP12S (FC 5886) is an expansion drawer with twelve 3.5-inch form factor SAS bays.
This drawer supports up to 12 hot-swap SAS HDDs or up to eight hot-swap SSDs. The
EXP12S includes redundant AC power supplies and two power cords. Although the drawer is
one set of 12 drives, which is run by one SAS controller or one pair of SAS controllers, it has
two SAS attachment ports and two service managers for redundancy. The EXP12S occupies
a 2U space in a 19-inch rack and the SAS controller can be a SAS PCIe adapter or pair
of adapters.
The drawer can be attached to the Power 710 and Power 730 by either using the FC EJ0F
storage backplane, providing an external SAS port, or using the following SAS adapters:
PCIe LP Dual-x4-Port SAS adapter 3 Gb (FC 5278, CCIN 57B3)
PCIe2 RAID SAS adapter Dual-Port 6 Gb (FC ESA2, CCIN 57B4)
A maximum number of eight EXP12S drawers can be attached to a Power 710 and
Power 730 server.
For details about SAS cabling, see the serial-attached SCSI cable planning documentation:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/p7had/p7hadsasc
abling.htm
Notes:
An existing EXP12S SAS expansion drawer is supported, but no longer orderable.
An existing EXP12S SAS expansion drawer is not supported on a 4-core Power 710
(FC EPCE).
If the internal disk bay of the Power 710 or Power 730 server contains any SSD drives,
an existing EXP12S SAS Expansion Drawer cannot be attached to the external SAS
port on the Power 710 or Power 730. This rule applies even if the I/O drawer contains
only SAS disk drives.

Chapter 2. Architecture and technical overview
85
2.10.4 IBM System Storage
The IBM System Storage Disk Systems products and offerings provide compelling
storage solutions with superior value for all levels of business, from entry-level to high-end
storage systems.
IBM System Storage N series
The IBM System Storage N series is a network-attached storage (NAS) solution. It offers
the latest technology to help customers improve performance, virtualization manageability,
and system efficiency at a reduced total cost of ownership. For more information about the
IBM System Storage N series hardware and software, see the following location:
http://www.ibm.com/systems/storage/network
IBM Storwize V3700
IBM Storwize® V3700, the most recent addition to the IBM Storwize family of disk systems,
delivers efficient, entry-level configurations, specifically designed to meet the needs of small
and midsize businesses. Designed to provide organizations with the ability to consolidate and
share data at an affordable price, Storwize V3700 offers advanced software capabilities that
are usually found in more expensive systems. For more information, see the following site:
http://www.ibm.com/systems/storage/disk/storwize_v3700/index.html
IBM System Storage DS3500
IBM System Storage DS3500 combines best-of-its-kind development with leading 6 Gbps
host interface and drive technology. With its simple, efficient, and flexible approach to storage,
the DS3500 is a cost-effective, fully integrated complement to IBM System x® servers, IBM
BladeCenter, and IBM Power Systems. By offering substantial improvements at a price that
fits most budgets, the DS3500 delivers superior price for performance ratios, functionality,
scalability, and ease of use for the entry-level storage user. For more information, see the
following website:
http://www.ibm.com/systems/storage/disk/ds3500/index.html
IBM Storwize V7000 and Storwize V7000 Unified Disk Systems
IBM Storwize V7000 and IBM Storwize V7000 Unified are virtualized storage systems
designed to consolidate workloads into a single storage system for simplicity of management,
reduced cost, highly scalable capacity, performance, and high availability. They offer improved
efficiency and flexibility through built-in solid-state drive (SSD) optimization, thin provisioning
and nondisruptive migration of data from existing storage. They can also virtualize and reuse
existing disk systems, offering a greater potential return on investment. Storwize V7000 and
V7000 Unified now support integrated IBM Real-time Compression™, enabling storage of up
to five times as much active primary data in the same physical space for extraordinary levels
of efficiency.
The IBM Flex System™ V7000 Storage Node is also available as an integrated component of
IBM Flex System and IBM PureFlex™ Systems and has been seamlessly integrated into the
Flex System Manager and Chassis Map, delivering new data center efficiencies. For more
information, see the following website:
http://www.ibm.com/systems/storage/disk/storwize_v7000/index.html

86
IBM Power 710 and 730 Technical Overview and Introduction
IBM XIV Storage System
IBM XIV® is a high-end disk storage system that helps thousands of enterprises meet the
challenge of data growth with hot-spot-free performance and ease of use. Simple scaling,
high service levels for dynamic, heterogeneous workloads, and tight integration with
hypervisors and the OpenStack platform, enable optimal storage agility for cloud
environments.
Optimized with inherent efficiencies that simplify storage, XIV delivers the benefits of IBM
Smarter Storage for Smarter Computing, empowering organizations to take control of their
storage and to extract more valuable insights from their data. XIV extends ease of use with
integrated management for large and multiple site XIV deployments, reducing operational
complexity and enhancing capacity planning. For more information, see the following website:
http://www.ibm.com/systems/storage/disk/xiv/index.html
IBM System Storage DS8000
The IBM System Storage DS8000® series is designed to manage a broad scope of storage
workloads that exist in today’s complex data center, doing it effectively and efficiently. The
proven success of this flagship IBM disk system is a direct consequence of its extraordinary
flexibility, reliability, and performance, but also of its capacity to satisfy the needs that are
always changing. The latest evidence of DS8000 series value is the IBM System Storage
DS8870 as the ideal storage platform for enterprise class environments. It provides unique
performance, availability and scalability.
The DS8870 delivers the following benefits:
Up to three times higher performance than DS8800.
Improved security with full disk encryption (FDE) as standard on all systems.
Optimized flash technology for dynamic performance and operational analytics.
Additionally, the DS8000 includes a range of features that automate performance optimization
and application quality of service, and also provide the highest levels of reliability and system
uptime. For more information, see the following website:
http://www.ibm.com/systems/storage/disk/ds8000/index.html
2.11 Hardware Management Console
The Hardware Management Console (HMC) is a dedicated appliance for configuring and
managing system resources on IBM Power Systems servers that use IBM POWER5,
POWER5+, POWER6, POWER6+ POWER7 and POWER7+ processors. The HMC provides
basic virtualization management support for configuring logical partitions (LPARs) and
dynamic resource allocation, including processor and memory settings for selected Power
Systems servers. The HMC also supports advanced service functions, including guided
repair and verify, concurrent firmware updates for managed systems, and error reporting on a
continual basis, through IBM Electronic Service Agent™, for faster support.
The HMC management features help to improve server utilization, simplify systems
management, and accelerate provisioning of server resources that use the PowerVM
virtualization technology.
Requirements: When using the HMC with the Power 710 and Power 730 server, the HMC
code must be running at V7R7.7.0 (SP1) level, or later.

Chapter 2. Architecture and technical overview
87
The Power 710 and Power 730 platforms support two main service environments:
Attachment to one or more HMCs is a supported option by the system
This configuration is the common configuration for servers that support logical partitions
with dedicated or virtual I/O. In this case, all servers have at least one logical partition.
No HMC attachment
Two service strategies are available for non HMC-attached systems:
– Full system partition: A single partition owns all the server resources and only one
operating system may be installed.
– Partitioned system: In this configuration, the system can have more than one partition
and can be running more than one operating system. In this environment, partitions
are managed by the Integrated Virtualization Manager (IVM), which includes some of
the functions offered by the HMC.
Hardware support for customer-replaceable units (CRUs) is a standard inclusion, along with
the HMC. In addition you have the option to upgrade this support level to IBM onsite support
to be consistent with other Power Systems servers.
If you want to use an existing HMC to manage any POWER7+ processor-based server, the
HMC must be model CR3 or later, rack-mounted HMC, or model C05 or later, deskside HMC.
HMC V7R7.7.0 is the last release to be supported on models 7310-C04, 7315-CR2, and
7310-CR2. Future HMC releases will not be supported on C04 or CR2 models.
When IBM Systems Director is used to manage an HMC or if the HMC manages more than
254 partitions, the HMC should have 3 GB of RAM minimum and be model CR3 or later,
rack-mounted, or model C06 or later, deskside.
HMC code level
HMC V7R7.7.0 (SP1) contains the following new features:
Support for managing IBM Power 710 and Power 730 systems
Support for PowerVM functions such as new HMC GUI interface for VIOS install
Improved transition from IVM to HMC management
Ability to update a user password in Kerberos from the HMC for clients using remote HMC
HMC V7R7.7.0 (SP1) supports up to 48 servers (non Power 590, Power 595, and Power 795
models) or 32 IBM Power 590, Power 595, and Power 795 servers. A maximum of 2000
LPARs are supported when you use a HMC V7R7.6.0 code at a minimum level and the HMC
is model 7042-CR6 or later.
If you attach an existing HMC to a new server such as the Power 710 and Power 730 or add
functions to an existing server that requires a firmware update, the HMC machine code might
need to be updated. Upgrade the support level of the HMC to be consistent with the support
that is provided on the servers to which it is attached. In a dual HMC configuration, both
systems must be at the same version and release of the HMC.
To determine the HMC machine code level that is required for the firmware level on any
server, go to the following website to access Fix Central and the Fix Level Recommendation
Tool (FLRT) on or after the planned availability date for this product. FLRT will identify the
correct HMC machine code for the selected system firmware level.
http://www-933.ibm.com/support/fixcentral/
With HMC code V7R7.7.0 (SP1), the HMC supports Mozilla Firefox 7 through 10 and
Microsoft Internet Explorer 7 through 9.

88
IBM Power 710 and 730 Technical Overview and Introduction
HMC RAID 1 support
HMCs now offer a high-availability feature. Starting from HMC 7042-CR7 RAID 1 protection
will be enabled by default. This feature enables data redundancy by using two physical disk
drives.
RAID 1 is also offered on both the 7042-CR6 and the 7042-CR7 (if the feature was removed
from the initial order) as an MES upgrade option.
Blade management
The HMC gives systems administrators a tool for planning, virtualizing, deploying, and
managing IBM Power System servers.
With the introduction of HMC V7R760, the HMC can now manage IBM BladeCenter Power
Blade servers. This management includes support for dual VIOS, live partition mobility
between blades and rack servers, and management of both blades and rack servers from a
single management console.
Comparison of 7042-CR6 and 7042-CR7 HMC models
The 7042-CR6 was withdrawn from marketing in December 2012. For your reference,
Table 2-25 compares features of the 7042-CR6 and the 7042-CR7 HMC models.
Table 2-25 Comparison for 7042-CR6 and 7042-CR7
2.11.1 HMC connectivity to the POWER7+ processor-based systems
POWER7+ processor technology-based servers and their predecessor systems that are
managed by an HMC require Ethernet connectivity between the HMC and the server’s
service processor. In addition, if dynamic LPAR, Live Partition Mobility, or PowerVM Active
Memory Sharing operations are required on the managed partitions, Ethernet connectivity is
needed between these partitions and the HMC. A minimum of two Ethernet ports are needed
on the HMC to provide such connectivity.
For any logical partition in a server, you may use a Shared Ethernet Adapter that is configured
through a Virtual I/O Server. Therefore, a partition does not require its own physical adapter
to communicate with an HMC.
Feature
CR6
CR7
IBM System x model x3550 M3 x3550 M4
HMC model 7042-CR6 7042-CR7
Processor Westmere-EP Intel Xeon E5
Memory 4 GB 4 GB
DASD 500 GB 500 GB
RAID 1 Optional Default
Multitech internal modem Default Optional
USB ports Two front, four back, one internal Two front, four back, one internal
Integrated network Two on main bus plus two on
expansion slot
Four 1 Gb Ethernet
I/O slots 1 PCI Express 2.0 slot 1 PCI Express 3.0 slot

Chapter 2. Architecture and technical overview
89
For the HMC to communicate properly with the managed server, eth0 port of the HMC must
be connected to either the HMC1 or HMC2 ports of the managed server, although other
network configurations are possible. You can attach a second HMC to HMC2 port of the
server for redundancy (or vice versa). These ports must be addressed by two separate
subnets. Figure 2-33 shows a simple network configuration to enable the connection from the
HMC to the server and to enable dynamic LPAR operations. For more details about HMC and
the possible network connections, see IBM Power Systems HMC Implementation and Usage
Guide, SG24-7491 (previous edition was named Hardware Management Console V7
Handbook, SG24-7491).
Figure 2-33 HMC to service processor and LPARs network connection
The default mechanism for allocation of the IP addresses for the service processor HMC
ports is dynamic. The HMC can be configured as a DHCP server, providing the IP address at
the time that the managed server is powered on. In this case, the flexible service processors
(FSPs) are allocated an IP address from a set of address ranges that are predefined in the
HMC software. These predefined ranges are identical for version V7R7.1.0 of the HMC code
and for previous versions.
If the service processor of the managed server does not receive a DHCP reply before time
out, predefined IP addresses are set up on both ports. Static IP address allocation is also an
option. You can configure the IP address of the service processor ports with a static IP
address by using the Advanced System Management Interface (ASMI) menus.
Power Systems server
LPAR
n
LPAR
...
LPAR
2
LPAR
1
entx
entx
entx
entx
Service
Processor
HMC2
eth0
HMC1
eth1
Management LAN
HMC

90
IBM Power 710 and 730 Technical Overview and Introduction
2.11.2 High availability HMC configuration
The HMC is an important hardware component. When in operation, Power Systems servers
and their hosted partitions can continue to operate when no HMC is available. However, in
such conditions, certain operations cannot be performed, such as a dynamic LPAR
reconfiguration, a partition migration using PowerVM Live Partition Mobility, or the creation of
a new partition. You might therefore decide to install two HMCs in a redundant configuration
so that one HMC is always operational, even when performing maintenance of the other one,
for example.
If redundant HMC functionality is what you want, a server can be attached to two independent
HMCs to address availability requirements. Both HMCs must have the same level of
Hardware Management Console Licensed Machine Code Version 7 and installed fixes to
manage POWER7+ processor-based servers, or an environment with a mixture of POWER5,
POWER5+, POWER6, POWER6+, POWER7, and POWER7+ processor-based servers.
The HMCs provide a locking mechanism so that only one HMC at a time has write access
to the service processor. Both HMCs should be available on a public subnet to allow full
synchronization of functionality. Depending on your environment, you have multiple options to
configure the network.
Notes: The service processor is used to monitor and manage the system hardware
resources and devices. The two service processor HMC ports run at a speed of 100 Mbps.
Both HMC ports are visible only to the service processor and can be used to attach the
server to an HMC, or to access the ASMI options from a client web browser by using
the HTTP server that is integrated into the service processor internal operating system.
When no IP address is set, by default, the configurations are as follows:
– Service processor eth0 or HMC1 port is configured as 169.254.2.147 with netmask
255.255.255.0.
– Service processor eth1 or HMC2 port is configured as 169.254.3.147 with netmask
255.255.255.0.
For more information about the service processor, see “Service processor” on page 162.

Chapter 2. Architecture and technical overview
91
Figure 2-34 shows one possible highly available HMC configuration that is managing two
servers. Each HMC is connected to one FSP port of all managed servers.
Figure 2-34 Highly available HMC and network architecture
For simplicity, only hardware management networks (LAN1 and LAN2) are highly available
(Figure 2-34). However, the management network (LAN3) can be made highly available by
using a similar concept and adding more Ethernet adapters to the LPARs and HMCs.
Both HMCs must be on a separate virtual local area network (VLAN) to protect from any
network contention. Each HMC can be a DHCP server for its VLAN.
For details about redundant HMC, see IBM Power Systems HMC Implementation and Usage
Guide, SG24-7491 (previous edition was named Hardware Management Console V7
Handbook, SG24-7491).
If you want to migrate an LPAR from a POWER6 processor-based server onto a POWER7+
processor-based server by using PowerVM Live Partition Mobility, consider how the source
server is managed. If the source server is managed by one HMC and the destination server is
managed by another HMC, ensure that the HMC that is managing the POWER6
processor-based server is at a minimum level of V7R7.3.5 or later, and that the HMC that is
managing the POWER7+ processor-based server is at minimum level of V7R7.6.0 or later.
2.12 Operating system support
The Power 710 and Power 730 servers support the following operating systems:
AIX
IBM i
Linux
In addition, the Virtual I/O Server can be installed in special partitions that provide support to
the other operating systems for using features such as virtualized I/O devices, PowerVM Live
Partition Mobility, or PowerVM Active Memory Sharing.
HMC1
HMC2
System A System B
1
2
FSP
1
2
FSP
LAN 1
LAN 2
LPAR A1
LPAR A2
LPAR A3
LPAR B1
LPAR B2
LPAR B3
eth0
eth1
eth0
eth1
LAN1 – Hardware management network for
first FSP ports (private)
LAN2 – Hardware management network for
second FSP ports (private), separate
network hardware from LAN1
LAN3 – Open network for HMC access and
dLPAR operations
LAN3 – Open network

92
IBM Power 710 and 730 Technical Overview and Introduction
For details about the software available on IBM Power Systems, visit the IBM Power Systems
Software™ website:
http://www.ibm.com/systems/power/software/index.html
2.12.1 IBM AIX operating system
IBM periodically releases maintenance packages (service packs or technology levels) for the
AIX operating system. Information about these packages, downloading, and obtaining the
CD-ROM is on the Fix Central website. The Fix Central website also provides information
about how to obtain the fixes that are included on CD-ROM.
http://www-933.ibm.com/support/fixcentral/
The Service Update Management Assistant (SUMA), which can help you to automate the
task of checking and downloading operating systems, is part of the base operating system.
For more information about the suma command, go to the following website:
http://www14.software.ibm.com/webapp/set2/sas/f/genunix/suma.html
IBM AIX Version 5.3
At the time of writing, AIX Version 5.3 is not supported with the Power 710 and Power 730.
IBM AIX Version 6.1
The following minimum levels of AIX Version 6.1 support the Power 710 and Power 730:
AIX V6.1 with the 6100-08 Technology Level and Service Pack 2, or later
AIX V6.1 with the 6100-07 Technology Level and Service pack 7, or later (planned
availability March 29, 2013)
AIX V6.1 with the 6100-06 Technology Level and Service pack 11, or later (planned
availability March 29, 2013)
A partition that uses AIX 6.1 can run in POWER6, POWER6+, or POWER7 mode. The best
approach is to run the partition in POWER7 mode to allow exploitation of new hardware
capabilities such as SMT4 and Active Memory Expansion.
IBM AIX Version 7.1
The following minimum level of AIX Version 7.1 supports the Power 710 and Power 730:
AIX V7.1 with the 7100-02 Technology Level and Service Pack 2, or later
A partition that uses AIX 7.1 can run in POWER6, POWER6+, or POWER7 mode. The best
approach is to run the partition in POWER7 mode to allow exploitation of new hardware
capabilities such as SMT4 and Active Memory Expansion.
Statement of Direction (SoD): IBM intends to provide to those clients with AIX 5.3
Technology Level 12 (and the associated service extension offering) the ability to run that
environment on Power 710 and Power 730.
Statement of Direction (SoD): IBM intends to provide to those clients with AIX 7.1
Technology Level 0 or Technology Level 1 the ability to run that environment on
Power 710 and Power 730.

Chapter 2. Architecture and technical overview
93
2.12.2 IBM i operating system
The IBM i operating system is supported on the Power 710 and Power 730 with the following
minimum required levels:
IBM i 7.1, or later
IBM i 6.1 with machine code 6.1.1, or later
– Requires all I/O to be virtual
– Cannot be ordered as the primary operating system with FC 2145 and FC 0566
IBM periodically releases maintenance packages (service packs or technology levels) for the
IBM i operating system. Information about these packages, downloading, and obtaining the
CD-ROM is on the Fix Central website:
http://www-933.ibm.com/support/fixcentral/
Visit the IBM Prerequisite website for compatibility information for hardware features and the
corresponding AIX and IBM i Technology Levels.
http://www-912.ibm.com/e_dir/eserverprereq.nsf
2.12.3 Linux operating system
Linux is an open source operating system that runs on numerous platforms, from embedded
systems to mainframe computers. It provides an implementation like UNIX across many
computer architectures.
The supported versions of Linux on the Power 710 and Power 730 servers are as follows:
SUSE Linux Enterprise Server 11 Service Pack 2, or later, with current maintenance
updates available from Novell to enable all planned functionality
For Red Hat Enterprise Linux (RHEL), consult the following Statements of Direction:
– RHEL 6.4 support for Power 710 and Power 730
IBM intends to continue to work with Red Hat to provide support for Power 710 and
Power 730 with an upcoming Red Hat Enterprise Linux 6 release. For additional
questions about the availability of this release and supported hardware servers,
consult the Red Hat Hardware Catalog at:
https://hardware.redhat.com
– RHEL 6 preinstall feature for Power 710 and Power 730
IBM intends to provide support for preinstall of an upcoming Red Hat Enterprise
Linux 6 release on the Power 710 and Power 730 systems.
If you want to configure Linux partitions in virtualized Power Systems, be aware of the
following conditions:
Not all devices and features that are supported by the AIX operating system are supported
in logical partitions running the Linux operating system.
Linux operating system licenses are ordered separately from the hardware. You can
acquire Linux operating system licenses from IBM to be included with the POWER7+
processor-based servers, or from other Linux distributors.
For information about features and external devices that are supported by Linux, see the
following site:
http://www.ibm.com/systems/p/os/linux/index.html

94
IBM Power 710 and 730 Technical Overview and Introduction
Be sure to update your systems with the latest Linux for Power service and productivity tools:
http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/home.html
See information about SUSE Linux Enterprise Server:
http://www.novell.com/products/server
See information about Red Hat Enterprise Linux Advanced Server:
http://www.redhat.com/rhel/features
2.12.4 Virtual I/O Server
The minimum required level of Virtual I/O Server for both the Power 710 and Power 730 is
VIOS 2.2.2.2.
IBM regularly updates the Virtual I/O Server code. To find information about the latest
updates, visit the Fix Central website:
http://www-933.ibm.com/support/fixcentral/
2.12.5 Java versions that are supported
Unique considerations exist for running Java 1.4.2 on POWER7 or POWER7+ servers. For
best use of the performance capabilities and most recent improvements of POWER7
technology, upgrade Java-based applications to Java 7, Java 6, or Java 5 when possible. See
the AIX download and service information page:
http://www.ibm.com/developerworks/java/jdk/aix/service.html
2.12.6 Boosting performance and productivity with IBM compilers
IBM XL C, XL C/C++, and XL Fortran compilers for AIX and for Linux use the latest
POWER7+ processor architecture. With each release, these compilers continue to help
improve application performance and capability, exploiting architectural enhancements that
are made available through the advancement of the POWER technology.
IBM compilers are designed to optimize and tune your applications for execution on IBM
POWER platforms to help you unleash the full power of your IT investment, to create and
maintain critical business and scientific applications, to maximize application performance,
and to improve developer productivity.
The performance gain from years of compiler optimization experience is seen in the
continuous release of compiler improvements that support the POWER4 processors, through
to POWER4+, POWER5, POWER5+, POWER6, and POWER7 processors, and now
including the POWER7+ processors. With the support of the latest POWER7+ processor
chip, IBM advances a more than a 20-year investment in the XL compilers for POWER series
and IBM PowerPC® series architectures.
Statement of Direction (SoD): IBM intends to provide to those clients with VIOS 2.2.1 the
ability to run that environment on the Power 710 and Power 730.

Chapter 2. Architecture and technical overview
95
The XL C, XL C/C++, and XL Fortran features that are introduced to use the latest POWER7+
processor include the following items:
Vector unit and vector scalar extension (VSX) instruction set to efficiently manipulate
vector operations in your application
Vector functions within the Mathematical Acceleration Subsystem (MASS) libraries for
improved application performance
Built-in functions or intrinsics and directives for direct control of POWER instructions at the
application level
Architecture and tune compiler options to optimize and tune your applications
COBOL for AIX enables you to selectively target code generation of your programs to
either exploit POWER7+ systems architecture or to be balanced among all supported
POWER systems. The performance of COBOL for AIX applications is improved by means
of an enhanced back-end optimizer. With the back-end optimizer, a component common
also to the IBM XL compilers, your applications can use the most recent industry-leading
optimization technology.
The performance of PL/I for AIX applications is improved through both front-end changes and
back-end optimizer enhancements. With the back-end optimizer, a component common also
to the IBM XL compilers, your applications can use the most recent industry-leading
optimization technology. For PL/I, it produces code that is intended to perform well across all
hardware levels, including POWER7+ of AIX.
IBM Rational® Development Studio for IBM i 7.1 provides programming languages for
creating modern business applications:
ILE RPG
ILE COBOL
C and C++ compilers
Heritage RPG and COBOL compilers
The latest release includes performance improvements and XML processing enhancements
for ILE RPG and ILE COBOL, improved COBOL portability with a COMP-5 data type, and
easier Unicode migration with relaxed USC2 rules in ILE RPG. Rational also released a
product named Rational Open Access: RPG Edition. This product opens the ILE RPG file I/O
processing, enabling partners, tool providers, and users to write custom I/O handlers that can
access other devices like databases, services, and web user interfaces.
IBM Rational Developer for Power Systems Software provides a rich set of integrated
development tools that support the XL C/C++ for AIX compiler, the XL C for AIX compiler, and
the COBOL for AIX compiler. Rational Developer for Power Systems Software offers
capabilities of file management, searching, editing, analysis, build, and debug, all integrated
into an Eclipse workbench. XL C/C++, XL C, and COBOL for AIX developers can boost
productivity by moving from older, text-based, command-line development tools to a rich set
of integrated development tools.
The IBM Rational Power Appliance solution provides a workload-optimized system and
integrated development environment for AIX development on IBM Power Systems. IBM
Rational Power Appliance includes a Power Express server, preinstalled with a
comprehensive set of Rational development software along with the AIX operating system.
The Rational development software includes support for Collaborative Application Lifecycle
Management (C/ALM) through IBM Rational Team Concert™, a set of software development
tools from Rational Developer for Power Systems Software, and a choice between the XL
C/C++ for AIX or COBOL for AIX compilers.

96
IBM Power 710 and 730 Technical Overview and Introduction
2.13 Energy management
The Power 710 and 730 servers are designed with features to help clients become more
energy efficient. The IBM Systems Director Active Energy Manager uses EnergyScale
technology, enabling advanced energy management features to dramatically and dynamically
conserve power and further improve energy efficiency. Intelligent Energy optimization
capabilities enable the POWER7+ processor to operate at a higher frequency for increased
performance and performance per watt, or dramatically reduce frequency to save energy.
Certain configurations of the Power 730 server are ENERY STAR qualified. For details see
the following website:
http://www.ibm.com/systems/hardware/energy_star/power.html
2.13.1 IBM EnergyScale technology
IBM EnergyScale technology provides functions to help the user understand and dynamically
optimize processor performance versus processor energy consumption, and system
workload, to control IBM Power Systems power and cooling usage.
On POWER7 or POWER7+ processor-based systems, the thermal power management
device (TPMD) card is responsible for collecting the data from all system components,
changing operational parameters in components, and interacting with the IBM Systems
Director Active Energy Manager (an IBM Systems Director plug-in) for energy management
and control.
IBM EnergyScale uses power and thermal information that is collected from the system to
implement policies that can lead to better performance or better energy utilization. IBM
EnergyScale has the following features:
Power trending
EnergyScale provides continuous collection of real-time server energy consumption. It
enables administrators to predict power consumption across their infrastructure and to
react to business and processing needs. For example, administrators can use such
information to predict data center energy consumption at various times of the day, week,
or month.
Thermal reporting
IBM Director Active Energy Manager can display measured ambient temperature and
calculated exhaust heat index temperature. This information can help identify data center
hot spots that need attention. See Figure 2-35 on page 97 for an example.
Power saver mode
Power saver mode lowers the processor frequency and voltage on a fixed amount,
reducing the energy consumption of the system while still delivering predictable
performance. This percentage is predetermined to be within a safe operating limit and
is not user configurable. The server is designed for a fixed frequency drop of almost
50%down from nominal frequency (the actual value depends on the server type and
configuration).
Power saver mode is not supported during booting or rebooting, although it is a persistent
condition that is sustained after the boot when the system starts executing instructions.
Dynamic power saver mode
Dynamic power saver mode varies processor frequency and voltage based on the
utilization of the POWER7 or POWER7+ processors. Processor frequency and utilization

Chapter 2. Architecture and technical overview
97
are inversely proportional for most workloads, implying that as the frequency of a
processor increases, its utilization decreases, given a constant workload. Dynamic power
saver mode takes advantage of this relationship to detect opportunities to save power,
based on measured real-time system utilization.
When a system is idle, the system firmware lowers the frequency and voltage to power
energy saver mode values. When fully utilized, the maximum frequency varies, depending
on whether the user favors power savings or system performance. If an administrator
prefers energy savings and a system is fully utilized, the system is designed to reduce the
maximum frequency to about 95% of nominal values. If performance is favored over
energy consumption, the maximum frequency can be increased to up to 111.6% of
nominal frequency for extra performance.
Table 2-26 shows the maximum frequency increases of the various processor options.
Table 2-26 Maximum frequency increase values for Power 710 and Power 730
Dynamic power saver mode is mutually exclusive with power saver mode. Only one of
these modes can be enabled at a given time.
Figure 2-35 provides a view shown by the Active Energy Manager that shows the dynamic
CPU frequency change in a system using the Dynamic power saver mode.
Figure 2-35 Example of a system using Dynamic Power saver mode
Power capping
Power capping enforces a user-specified limit on power usage. Power capping is not a
power-saving mechanism. It enforces power caps by throttling the processors in the
system, degrading performance significantly. The idea of a power cap is to set a limit that
Processor module option
Power 710
Power 730
3.6 GHz 4-core (FC EPCE) 11.6%
3.6 GHz 8-core (FC EPCH) 11.6%
4.2 GHz 6-core (FC EPCG) 5.9% 5.9%
4.2 GHz 8-core (FC EPCJ) 7.3% 7.3%
4.3 GHz 4-core (FC EPCF) 5.8%
Overclocking
Power saving

98
IBM Power 710 and 730 Technical Overview and Introduction
must never be reached but that frees extra power that was never used in the data center.
The
margined
power is this amount of extra power that is allocated to a server during its
installation in a data center. It is based on the server environmental specifications that
usually are never reached because server specifications are always based on maximum
configurations and worst-case scenarios. The user must set and enable an energy cap
from the IBM Director Active Energy Manager user interface.
Soft power capping
There are two power ranges into which the power cap can be set: power capping, as
described previously, and soft power capping. Soft power capping extends the allowed
energy capping range further, beyond a region that can be guaranteed in all configurations
and conditions. If the energy management goal is to meet a particular consumption limit,
then soft power capping is the mechanism to use.
Processor core nap mode
IBM POWER7 and POWER7+ processor uses a low-power mode called
nap
that stops
processor execution when there is no work to do on that processor core. The latency of
exiting nap mode is small, typically not generating any impact on applications running.
Therefore, the IBM POWER Hypervisor™ can use nap mode as a general-purpose idle
state. When the operating system detects that a processor thread is idle, it yields control of
a hardware thread to the POWER Hypervisor. The POWER Hypervisor immediately puts
the thread into nap mode. Nap mode allows the hardware to turn the clock off on most of
the circuits in the processor core. Reducing active energy consumption by turning off the
clocks allows the temperature to fall, which further reduces leakage (static) power of the
circuits causing a cumulative effect. Nap mode saves 10 - 15% of power consumption in
the processor core.
Processor core sleep mode
To be able to save even more energy, the POWER7+ processor has an even lower power
mode referred to as
sleep
. Before a core and its associated private L2 cache enter sleep
mode, the cache is flushed, transition lookaside buffers (TLB) are invalidated, and the
hardware clock is turned off in the core and in the cache. Voltage is reduced to minimize
leakage current. Processor cores that are inactive in the system (such as capacity on
demand, CoD, processor cores) are kept in sleep mode. Sleep mode saves about 80%
power consumption in the processor core and its associated private L2 cache.
Processor chip winkle mode
The most amount of energy can be saved when a whole POWER7+ chiplet enters the
winkle
mode. In this mode the entire chiplet is turned off including the L3 cache. This way
can save more than 95% power consumption.
Fan control and altitude input
System firmware dynamically adjusts fan speed based on energy consumption, altitude,
ambient temperature, and energy savings modes. Power Systems are designed to
operate in worst-case environments, in hot ambient temperatures, at high altitudes, and
with high-power components. In a typical case, one or more of these constraints are not
valid. When no power savings setting is enabled, fan speed is based on ambient
temperature and assumes a high-altitude environment. When a power savings setting is
enforced (either Power Energy Saver Mode or Dynamic Power Saver Mode), fan speed
will vary based on power consumption, ambient temperature, and altitude available.
System altitude can be set in IBM Director Active Energy Manager. If no altitude is set, the
system will assume a default value of 350 meters above sea level.
The Power 710 and the Power 730 comply to the ASHRAE Class A3 standard and can
support up to 35 degrees Celsius and 1825 meter at the rated performance. However, they
could operate in a degraded performance above 35 degrees Celsius up to 40 degrees
Celsius, or higher altitudes.

Chapter 2. Architecture and technical overview
99
Processor folding
Processor folding is a consolidation technique that dynamically adjusts, over the short
term, the number of processors available for dispatch to match the number of processors
demanded by the workload. As the workload increases, the number of processors made
available increases. As the workload decreases, the number of processors that are made
available decreases. Processor folding increases energy savings during periods of low to
moderate workload because unavailable processors remain in low-power idle states (nap
or sleep) longer.
EnergyScale for I/O
IBM POWER7 and POWER7+ processor-based systems automatically power off hot
pluggable PCI adapter slots that are empty or not being used. System firmware
automatically scans all pluggable PCI slots at regular intervals, looking for those that meet
the criteria for being not in use and powering them off. This support is available for all
POWER7 and POWER7+ processor-based servers and the expansion units that they
support.
Server power down
If overall data center processor utilization is low, workloads can be consolidated on fewer
numbers of servers so that some servers can be turned off completely. Consolidation
makes sense when there will be long periods of low utilization, such as weekends. Active
Energy Manager (AEM) provides information, such as the power that will be saved and the
time needed to bring a server back online, that can be used to help make the decision to
consolidate and power off. As with many of the features that are available in IBM Systems
Director and Active Energy Manager, this function is scriptable and can be automated.
Partition power management
Available with Active Energy Manager 4.3.1 or later, and POWER7 systems with the 730
firmware release or later, is the capability to set a power savings mode for partitions or the
system processor pool. As in the system-level power savings modes, the per-partition
power savings modes can be used to achieve a balance between the power consumption
and the performance of a partition. Only partitions that have dedicated processing units
can have a unique power savings setting. Partitions that run in shared processing mode
have a common power savings setting, which is that of the system processor pool. The
reason is because processing unit fractions cannot be power-managed.
As in the case of system-level power savings, two Dynamic Power Saver options are
offered:
– Favor partition performance
– Favor partition power savings
This setting must configured from Active Energy Manager. When dynamic power saver is
enabled in either mode, system firmware continuously monitors the performance and
utilization of each of the computer's POWER7 or POWER7+ processor cores that belong
to the partition. Based on this utilization and performance data, the firmware dynamically
adjusts the processor frequency and voltage, reacting within milliseconds to adjust
workload performance and also deliver power savings when the partition is underused.
In addition to the two dynamic power saver options, the customer can select to have no
power savings on a given partition. This option leaves the processor cores that are
assigned to the partition running at their nominal frequencies and voltages.
A power savings mode, referred to as
inherit host setting
, is available and is applicable
only to partitions. When configured to use this setting, a partition adopts the power
savings mode of its hosting server. By default, all partitions with dedicated processing
units, and the system processor pool, are set to the inherit host setting.

100
IBM Power 710 and 730 Technical Overview and Introduction
On POWER7 and POWER7+ processor-based systems, several EnergyScale
technologies are imbedded in the hardware and do not require an operating system or
external management component. More advanced functionality requires Active Energy
Manager (AEM) and IBM Systems Director.
Table 2-27 lists all features that are supported, showing all cases in which AEM is not
required, and also detailing the features that can be activated by traditional user interfaces
(for example, ASMI and HMC).
Table 2-27 AEM support
The Power 710 and Power 730 systems implement all EnergyScale capabilities that are listed
in 2.13.1, “IBM EnergyScale technology” on page 96.
2.13.2 Thermal power management device card
The Thermal power management device (TPMD) card is a separate micro controller installed
on some POWER6 processor-based systems, and on all POWER7 and POWER7+
processor-based systems. It runs real-time firmware whose sole purpose is to manage
system energy.
The TPMD card monitors the processor modules, memory, environmental temperature, and
fan speed. Based on this information, it can act upon the system to maintain optimal power
and energy conditions (for example, increase the fan speed to react to a temperature
change). It also interacts with the IBM Systems Director Active Energy Manager to report
power and thermal information and to receive input from AEM on policies to be set. The
TPMD is part of the EnergyScale infrastructure.
Feature
AEM required
ASMI
HMC
Power Trending Yes No No
Thermal Reporting Yes No No
Static Power Saver No Yes Yes
Dynamic Power Saver Yes No No
Power Capping Yes No No
Energy-optimized Fans No - -
Processor Core Nap No - -
Processor Core Sleep No - -
Processor Winkle mode No - -
Processor Folding No - -
EnergyScale for I/O No - -
Server Power Down Yes - -
Partition Power Management Yes - -

Chapter 2. Architecture and technical overview
101
2.13.3 Energy consumption estimation
Often, for Power Systems, various energy-related values are important:
Maximum power consumption and power source loading values
These values are important for site planning and are in the hardware information center:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp
Search for type and model number and server specifications. For example, for the
Power 730 system search for 8231-E2D server specifications.
An estimation of the energy consumption for a certain configuration
The calculation of the energy consumption for a certain configuration could be done in the
IBM Systems Energy Estimator:
http://www-912.ibm.com/see/EnergyEstimator/
In that tool select the type and model for the desired system, enter some details of the
configuration and a desired CPU utilization. As a result the tool shows the estimated
energy consumption and the waste heat at the desired utilization and also at full utilization.

102
IBM Power 710 and 730 Technical Overview and Introduction

© Copyright IBM Corp. 2013. All rights reserved.
103
Chapter 3.
Virtualization
As you look for ways to maximize the return on your IT infrastructure investments,
consolidating workloads becomes an attractive proposition.
IBM Power Systems combined with PowerVM technology offer key capabilities that can help
you consolidate and simplify your IT environment:
Improve server utilization and sharing I/O resources to reduce total cost of ownership and
make better use of IT assets.
Improve business responsiveness and operational speed by dynamically re-allocating
resources to applications as needed, to better match changing business needs or handle
unexpected changes in demand.
Simplify IT infrastructure management by making workloads independent of hardware
resources, so you can make business-driven policies to deliver resources based on time,
cost, and service-level requirements.
This chapter discusses the virtualization technologies and features on IBM Power Systems:
POWER Hypervisor
POWER processor modes
Active Memory Expansion
PowerVM
System Planning Tool
New PowerVM version 2.2.2 features
3

104
IBM Power 710 and 730 Technical Overview and Introduction
3.1 POWER Hypervisor
Combined with features in the POWER7+ processors, the IBM POWER Hypervisor delivers
functions that enable other system technologies, including logical partitioning technology,
virtualized processors, IEEE VLAN-compatible virtual switch, virtual SCSI adapters, virtual
Fibre Channel adapters, and virtual consoles. The POWER Hypervisor is a basic component
of the system’s firmware and offers the following functions:
Provides an abstraction between the physical hardware resources and the logical
partitions that use them.
Enforces partition integrity by providing a security layer between logical partitions.
Controls the dispatch of virtual processors to physical processors (see “Processing mode”
on page 116).
Saves and restores all processor state information during a logical processor
context switch.
Controls hardware I/O interrupt management facilities for logical partitions.
Provides virtual LAN channels between logical partitions that help to reduce the need for
physical Ethernet adapters for inter-partition communication.
Monitors the service processor and performs a reset or reload if it detects the loss of the
service processor, notifying the operating system if the problem is not corrected.
The POWER Hypervisor is always active, regardless of the system configuration and also
when not connected to the managed console. It requires memory to support the resource
assignment to the logical partitions on the server. The amount of memory that is required by
the POWER Hypervisor firmware varies according to several factors:
Number of logical partitions
Number of physical and virtual I/O devices used by the logical partitions
Maximum memory values specified in the logical partition profiles
The minimum amount of physical memory that is required to create a partition will be the size
of the system’s logical memory block (LMB). The default LMB size varies according to the
amount of memory that is configured in the CEC (Table 3-1).
Table 3-1 Configured CEC memory-to-default logical memory block size
In most cases, however, the actual minimum requirements and recommendations of the
supported operating systems are greater than 256 MB. Physical memory is assigned to
partitions in increments of LMB.
The POWER Hypervisor provides the following types of virtual I/O adapters:
Virtual SCSI
Virtual Ethernet
Virtual Fibre Channel
Virtual (TTY) console
Configurable CEC memory
Default logical memory block
Up to 32 GB 128 MB
Greater than 32 GB 256 MB

Chapter 3. Virtualization
105
Virtual SCSI
The POWER Hypervisor provides a virtual SCSI mechanism for the virtualization of storage
devices. The storage virtualization is accomplished by using two paired adapters:
A virtual SCSI server adapter
A virtual SCSI client adapter
A Virtual I/O Server partition or an IBM i partition can define virtual SCSI server adapters.
Other partitions are
client
partitions. The Virtual I/O Server partition is a special logical
partition, as described in 3.4.4, “Virtual I/O Server” on page 122. The Virtual I/O Server
software is included on all PowerVM editions. When using the PowerVM Standard Edition and
PowerVM Enterprise Edition, dual Virtual I/O Servers can be deployed to provide maximum
availability for client partitions when performing Virtual I/O Server maintenance.
Virtual Ethernet
The POWER Hypervisor provides a virtual Ethernet switch function that allows partitions on
the same server to use fast and secure communication without any need for physical
interconnection. The virtual Ethernet allows a transmission speed up to 20 Gbps, depending
on the maximum transmission unit (MTU) size, type of communication and CPU entitlement.
Virtual Ethernet support began with IBM AIX Version 5.3, Red Hat Enterprise Linux 4, and
SUSE Linux Enterprise Server, 9, and it is supported on all later versions. (For more
information, see 3.4.10, “Operating system support for PowerVM” on page 134). The virtual
Ethernet is part of the base system configuration.
Virtual Ethernet has the following major features:
The virtual Ethernet adapters can be used for both IPv4 and IPv6 communication and can
transmit packets with a size up to 65,408 bytes. Therefore, the maximum MTU for the
corresponding interface can be up to 65,394 (or 65,390 if VLAN tagging is used).
The POWER Hypervisor presents itself to partitions as a virtual 802.1Q-compliant switch.
The maximum number of VLANs is 4096. Virtual Ethernet adapters can be configured as
either untagged or tagged (following the IEEE 802.1Q VLAN standard).
A partition can support 256 virtual Ethernet adapters. Besides a default port VLAN ID,
the number of additional VLAN ID values that can be assigned per virtual Ethernet
adapter is 20, which implies that each virtual Ethernet adapter can be used to access 21
virtual networks.
Each partition operating system detects the virtual local area network (VLAN) switch
as an Ethernet adapter without the physical link properties and asynchronous data
transmit operations.
Any virtual Ethernet can also have connectivity outside of the server if a layer-2 bridge to a
physical Ethernet adapter is set in one Virtual I/O Server partition, also known as Shared
Ethernet Adapter. See 3.4.4, “Virtual I/O Server” on page 122, for details about shared
Ethernet.
Adapter and access: Virtual Ethernet is based on the IEEE 802.1Q VLAN standard. No
physical I/O adapter is required when creating a VLAN connection between partitions, and
no access to an outside network is required.

106
IBM Power 710 and 730 Technical Overview and Introduction
Virtual Fibre Channel
A virtual Fibre Channel adapter is a virtual adapter that provides client logical partitions with a
Fibre Channel connection to a storage area network through the Virtual I/O Server logical
partition. The Virtual I/O Server logical partition provides the connection between the virtual
Fibre Channel adapters on the Virtual I/O Server logical partition and the physical Fibre
Channel adapters on the managed system. Figure 3-1 depicts the connections between the
client partition virtual Fibre Channel adapters and the external storage. For additional
information, see 3.4.10, “Operating system support for PowerVM” on page 134.
Figure 3-1 Connectivity between virtual Fibre Channels adapters and external SAN devices
Virtual (TTY) console
Each partition must have access to a system console. Tasks such as operating system
installation, network setup, and various problem analysis activities require a dedicated system
console. The POWER Hypervisor provides the virtual console by using a virtual TTY or serial
adapter and a set of Hypervisor calls to operate on them. Virtual TTY does not require the
purchase of any additional features or software, such as the PowerVM Edition features.
Depending on the system configuration, the operating system console can be provided by the
Hardware Management Console virtual TTY, IVM virtual TTY, or from a terminal emulator that
is connected to a system port.
Client logical
partition 1
Client virtual
fibre channel
adapter
Virtual I/O Server 1
Client logical
partition 2
Client virtual
fibre channel
adapter
Client logical
partition 3
Client virtual
fibre channel
adapter
Hypervisor
Physical fibre
channel adapter
Server virtual fibre
channel adapter
Server virtual fibre
channel adapter
Server virtual fibre
channel adapter
Storage Area
Network
Physical
storage 1
Physical
storage 2
Physical
storage 3

Chapter 3. Virtualization
107
3.2 POWER processor modes
Although, strictly speaking, not a virtualization feature, the POWER modes are described
here because they affect various virtualization features.
On Power System servers, partitions can be configured to run in several modes, including the
following modes:
POWER6 compatibility mode
This execution mode is compatible with Version 2.05 of the Power Instruction Set
Architecture (ISA). For more information, visit the following address:
http://power.org/wp-content/uploads/2012/07/PowerISA_V2.05.pdf
POWER6+ compatibility mode
This mode is similar to POWER6, with eight more storage protection keys.
POWER7 mode
This is the native mode for POWER7+ and POWER7 processors, implementing the v2.06
of the Power Instruction Set Architecture. For more information, visit the following address:
http://power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf

108
IBM Power 710 and 730 Technical Overview and Introduction
The selection of the mode is made on a per-partition basis, from the managed console, by
editing the partition profile (Figure 3-2).
Figure 3-2 Configuring partition profile compatibility mode from the managed console

Chapter 3. Virtualization
109
Table 3-2 lists the differences between these modes.
Table 3-2 Differences between POWER6, POWER6+, and POWER7 compatibility mode
3.3 Active Memory Expansion
Active Memory Expansion enablement is an optional feature of POWER7 and POWER7+
processor-based servers that must be specified by using FC 4795 when creating the
configuration in the e-Config tool.
This feature enables memory expansion on the system. By using compression and
decompression of memory content can effectively expand the maximum memory capacity,
providing additional server workload capacity and performance.
Active Memory Expansion is a POWER technology that allows the effective maximum
memory capacity to be much larger than the true physical memory maximum. Compression
and decompression of memory content can allow memory expansion up to 125% for AIX
partitions, which in turn enables a partition to perform significantly more work or support more
users with the same physical amount of memory. Similarly, it can allow a server to run more
partitions and do more work for the same physical amount of memory.
Active Memory Expansion is available for partitions running AIX 6.1, Technology Level 4 with
SP2, or later.
Active Memory Expansion uses the CPU resource of a partition to compress and decompress
the memory contents of this same partition.The trade-off of memory capacity for processor
cycles can be an excellent choice, but the degree of expansion varies based on how
POWER6 and POWER6+
mode
POWER7
mode
Customer value
2-thread SMT 4-thread SMT Throughput performance,
processor core utilization
Vector Multimedia Extension/
AltiVec (VMX)
Vector scalar extension (VSX) High-performance computing
Affinity off by default 3-tier memory, micropartition
affinity, dynamic platform
optimizer
Improved system performance
for system images spanning
sockets and nodes
Barrier synchronization
Fixed 128-byte array, kernel
extension access
Enhanced barrier
Synchronization
Variable sized array, user
shared memory access
High-performance computing
parallel programming
synchronization facility
64-core and 128-thread scaling 32-core and 128-thread
scaling
64-core and 256-thread
scaling
128-core and 512-thread
scaling
256-core and 1024-thread
scaling
Performance and scalability for
large scale-up single system
image workloads (such as
OLTP, ERP scale-up, and
WPAR consolidation)
EnergyScale CPU Idle EnergyScale CPU Idle and
Folding with NAP and SLEEP
Improved energy efficiency

110
IBM Power 710 and 730 Technical Overview and Introduction
compressible the memory content is, and it also depends on having adequate spare CPU
capacity available for this compression and decompression.
The POWER7+ processor includes Active Memory Expansion on the processor chip to
provide dramatic improvement in performance and greater processor efficiency. To take
advantage of the hardware compression offload, AIX 6.1 Technology Level 8 is required.
The Active Memory Expansion feature is not supported with the IBM i and Linux operating
systems.
Tests in IBM laboratories, using sample work loads, showed excellent results for many
workloads in terms of memory expansion per additional CPU utilized. Other test workloads
had more modest results. The ideal scenario is when there are many cold pages, that is,
infrequently referenced pages. However, if many memory pages are referenced frequently,
the Active Memory Expansion might not be a good choice.
Clients have much control over Active Memory Expansion usage. Each individual AIX
partition can turn on or turn off Active Memory Expansion. Control parameters set the amount
of expansion you want in each partition to help control the amount of CPU that is used by the
Active Memory Expansion function. An initial program load (IPL) is required for the specific
partition that is turning memory expansion on or off. After turned on, monitoring capabilities
are available in standard AIX performance tools, such as lparstat, vmstat, topas, and svmon.
For specific POWER7+ hardware compression, the amepat tool is used to configure the
offload details.
Figure 3-3 represents the percentage of CPU that is used to compress memory for two
partitions with separate profiles. Curve 1 corresponds to a partition that has spare processing
power capacity. Curve 2 corresponds to a partition that is constrained in processing power.
Figure 3-3 CPU usage versus memory expansion effectiveness
Both cases show that there is a “knee-of-curve” relationship for the CPU resource required for
memory expansion:
Busy processor cores do not have resources to spare for expansion.
The more memory expansion is done, the more CPU resource is required.
Tip: If the workload is Java-based, the garbage collector must be tuned, so that it does not
access the memory pages so often, turning cold pages to hot.
% CPU
utilization
for
expansion
Amount of memory expansion
1 = Plenty of spare
CPU resource
available
2 = Constrained
CPU resource –
already running at
significant utilization
1
2
Very cost effective

Chapter 3. Virtualization
111
The knee varies depending on how compressible the memory contents are. This example
demonstrates the need for a case-by-case study of whether memory expansion can provide a
positive return on investment.
To help you do this study, a planning tool is included with AIX 6.1 Technology Level 4 SP2,
allowing you to sample actual workloads and estimate how expandable the partition’s
memory is and how much CPU resource is needed. Any model Power System can run the
planning tool.
Figure 3-4 shows an example of the output that is returned by this planning tool. The tool
outputs various real memory and CPU resource combinations to achieve the desired effective
memory. It also recommends one particular combination. In this example, the tool
recommends that you allocate 13% of processing power (2.13 physical processors in this
setup) to benefit from 119% extra memory capacity.
Figure 3-4 Output from Active Memory Expansion planning tool
Active Memory Expansion Modeled Statistics:
-------------------------------------------
Modeled Expanded Memory Size : 52.00 GB
Achievable Compression ratio : 4.51
Expansion Modeled True Modeled CPU Usage
Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
1.40 37.25 GB 14.75 GB [ 40%] 0.00 [ 0%]
1.80 29.00 GB 23.00 GB [ 79%] 0.87 [ 5%]
2.19 23.75 GB 28.25 GB [119%] 2.13 [ 13%]
2.57 20.25 GB 31.75 GB [157%] 2.96 [ 18%]
2.98 17.50 GB 34.50 GB [197%] 3.61 [ 23%]
3.36 15.50 GB 36.50 GB [235%] 4.09 [ 26%]
Active Memory Expansion Recommendation:
---------------------------------------
The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 23.75 GB and to configure a memory expansion factor
of 2.19. This will result in a memory gain of 119%. With this
configuration, the estimated CPU usage due to AME is approximately 2.13
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 11.65 physical processors.

112
IBM Power 710 and 730 Technical Overview and Introduction
After you select the value of the memory expansion factor that you want to achieve, you can
use this value to configure the partition from the managed console (Figure 3-5).
Figure 3-5 Using the planning tool result to configure the partition
On the HMC menu that describes the partition, select the Active Memory Expansion check
box and enter the true and maximum memory, and the memory expansion factor. To turn off
expansion, clear the check box. In both cases, reboot the partition to activate the change.
In addition, a one-time, 60-day trial of Active Memory Expansion is available to provide more
exact memory expansion and CPU measurements. The trial can be requested by using the
Power Systems Capacity on Demand web page:
http://www.ibm.com/systems/power/hardware/cod/
Active Memory Expansion can be ordered with the initial order of the server or as a
miscellaneous equipment specification (MES) order. A software key is provided when the
enablement feature is ordered that is applied to the server. Rebooting is not required to
enable the physical server. The key is specific to an individual server and is permanent. It
cannot be moved to a separate server. This feature is ordered per server, independent of the
number of partitions using memory expansion.
Active Memory Expansion Modeled Statistics:
-----------------------
Modeled Expanded Memory Size : 8.00 GB
Expansion True Memory Modeled Memory CPU Usage
Factor Modeled Size Gain Estimate
--------- -------------- ----------------- -----------
1.21 6.75 GB 1.25 GB [ 19%] 0.00
1.31 6.25 GB 1.75 GB [ 28%] 0.20
1.41 5.75 GB 2.25 GB [ 39%] 0.35
1.51 5.50 GB 2.50 GB[ 45%] 0.58
1.61 5.00 GB 3.00 GB [ 60%] 1.46
Active Memory Expansion Recommendation:
---------------------
The recommended AME configuration for this workload is to
configure the LPAR with a memory size of 5.50 GB and to configure
a memory expansion factor of 1.51. This will result in a memory
expansion of 45% from the LPAR's current memory size. With this
configuration, the estimated CPU usage due to Active Memory
Expansion is approximately 0.58 physical processors, and the
estimated overall peak CPU resource required for the LPAR is 3.72
physical processors.
5.5 true
8.0 max
S
a
m
p
l
e

o
u
t
p
u
t

Chapter 3. Virtualization
113
From the HMC, you can view whether the Active Memory Expansion feature was activated
(Figure 3-6).
Figure 3-6 Server capabilities listed from the HMC
For details about Active Memory Expansion, download the document Active Memory
Expansion: Overview and Usage Guide:
http://public.dhe.ibm.com/common/ssi/ecm/en/pow03037usen/POW03037USEN.PDF
3.4 PowerVM
The PowerVM platform is the family of technologies, capabilities, and offerings that delivers
industry-leading virtualization on the IBM Power Systems. It is the umbrella branding term for
Power Systems virtualization (Logical Partitioning, IBM Micro-Partitioning®, POWER
Hypervisor, Virtual I/O Server, Live Partition Mobility, Workload Partitions, and more). As with
Advanced Power Virtualization in the past, PowerVM is a combination of hardware
enablement and value-added software. The licensed features of each of the three separate
editions of PowerVM are described in 3.4.1, “PowerVM editions” on page 114.
Moving an LPAR: If you want to move an LPAR that uses Active Memory Expansion to a
system that uses Live Partition Mobility, the target system must support Active Memory
Expansion (the target system must have Active Memory Expansion activated with the
software key). If the target system does not have Active Memory Expansion activated, the
mobility operation fails during the premobility check phase, and an appropriate error
message is displayed.

114
IBM Power 710 and 730 Technical Overview and Introduction
3.4.1 PowerVM editions
The three editions of PowerVM are suited for various purposes:
PowerVM Express Edition
This edition is designed for customers who want an introduction to more advanced
virtualization features at a highly affordable price, generally in single-server projects.
PowerVM Standard Edition
This edition provides advanced virtualization functions and is intended for production
deployments and server consolidation.
PowerVM Enterprise Edition
This edition is suitable for large server deployments such as multi-server deployments and
cloud infrastructures. It includes unique features such as Active Memory Sharing and Live
Partition Mobility.
Table 3-3 lists the editions of PowerVM that are available on Power 710 and Power 730.
Table 3-3 Availability of PowerVM per POWER7+ processor technology-based server model
For more information about the features included on each version of PowerVM, see IBM
PowerVM Virtualization Introduction and Configuration, SG24-7940-04.
3.4.2 Logical partitions
Logical partitions (LPARs) and virtualization increase use of system resources and add a new
level of configuration possibilities.
Logical partitioning
Logical partitioning was introduced with the POWER4 processor-based product line and the
AIX Version 5.1, Red Hat Enterprise Linux 3.0 and SUSE Linux Enterprise Server 9.0
operating systems. This technology offered the capability to divide a pSeries system into
separate logical systems, allowing each LPAR to run an operating environment on dedicated
attached devices, such as processors, memory, and I/O components.
Later, dynamic logical partitioning increased the flexibility, allowing selected system
resources, such as processors, memory, and I/O components, to be added and deleted from
logical partitions while they are executing. AIX Version 5.2, with all the necessary
enhancements to enable dynamic LPAR, was introduced in 2002. At the same time, Red Hat
Enterprise Linux 5 and SUSE Linux Enterprise 9.0 were also able do support dynamic logical
partitioning. The ability to reconfigure dynamic LPARs encourages system administrators to
dynamically redefine all available system resources to reach the optimum capacity for each
defined dynamic LPAR.
Micro-Partitioning
The IBM Micro-Partitioning technology allows you to allocate fractions of processors to a
logical partition. This technology was introduced with POWER5 processor-based systems. A
logical partition using fractions of processors is also known as a
shared processor partition
or
micropartition. Micropartitions run over a set of processors called a
shared processor pool
,
Servers
Express
Standard
Enterprise
IBM Power 710 FC 5225 FC 5227 FC 5228
IBM Power 730 FC 5225 FC 5227 FC 5228

Chapter 3. Virtualization
115
and virtual processors are used to let the operating system manage the fractions of
processing power assigned to the logical partition. From an operating system perspective, a
virtual processor cannot be distinguished from a physical processor, unless the operating
system has been enhanced to be made aware of the difference. Physical processors are
abstracted into virtual processors that are available to partitions. The meaning of the term
physical

processor
in this section is a
processor core
. For example, a 2-core server has two
physical processors.
When defining a shared processor partition, several options must be defined:
The minimum, desired, and maximum processing units
Processing units are defined as processing power, or the fraction of time that the partition
is dispatched on physical processors. Processing units define the capacity entitlement of
the partition.
The shared processor pool
Select one from the list with the names of each configured shared processor pool. This list
also displays, in parentheses, the pool ID of each configured shared processor pool. If the
name of the desired shared processor pool is not available here, you must first configure
the shared processor pool by using the shared processor pool Management window.
Shared processor partitions use the default shared processor pool, called DefaultPool by
default. See 3.4.3, “Multiple shared processor pools” on page 117, for details about
multiple shared processor pools.
Whether the partition will be able to access extra processing power to “fill up” its virtual
processors above its capacity entitlement (selecting either to cap or uncap your partition).
If spare processing power is available in the shared processor pool or other partitions are
not using their entitlement, an uncapped partition can use additional processing units if its
entitlement is not enough to satisfy its application processing demand.
The weight (preference) in the case of an uncapped partition.
The minimum, desired, and maximum number of virtual processors.
The POWER Hypervisor calculates partition processing power based on minimum, desired,
and maximum values, processing mode, and is also based on requirements of other active
partitions. The actual entitlement is never smaller than the processing unit’s desired value, but
can exceed that value in the case of an uncapped partition and up to the number of virtual
processors allocated.
On the POWER7+ processors, a partition can be defined with a processor capacity as small
as 0.05 processing units. This number represents 0.05 of a physical processor. Each physical
processor can be shared by up to 20 shared processor partitions, and the partition’s
entitlement can be incremented fractionally by as little as 0.01 of the processor. The shared
processor partitions are dispatched and time-sliced on the physical processors under control
of the POWER Hypervisor. The shared processor partitions are created and managed by
the HMC.
IBM Power 710 supports up to eight cores, and these maximum numbers:
8 dedicated partitions
160 micropartitions (maximum 20 micropartitions per physical active core)
The Power 730 supports up to 16 cores in a single system, and these maximum numbers:
16 dedicated partitions
320 micropartitions (maximum 20 micropartitions per physical active core)

116
IBM Power 710 and 730 Technical Overview and Introduction
An important point is that the maximum amounts are supported by the hardware, but the
practical limits depend on application workload demands.
Consider the following additional information about virtual processors:
A virtual processor can be running (dispatched) either on a physical processor or as
standby waiting for a physical processor to became available.
Virtual processors do not introduce any additional abstraction level. They are only a
dispatch entity. When running on a physical processor, virtual processors run at the same
speed as the physical processor.
Each partition’s profile defines CPU entitlement that determines how much processing
power any given partition should receive. The total sum of CPU entitlement of all partitions
cannot exceed the number of available physical processors in a shared processor pool.
The number of virtual processors can be changed dynamically through a dynamic
LPAR operation.
Processing mode
When you create a logical partition, you can assign entire processors for dedicated use, or
you can assign partial processing units from a shared processor pool. This setting defines the
processing mode of the logical partition. Figure 3-7 shows a diagram of the concepts
described in this section.
Figure 3-7 Logical partitioning concepts
Set of micro-partitions
KEY
:
vp Virtual processor
lp Logical processor
PrU Processing Units
Shared-Processor Pool 0
Set of micro-partitions
Shared-Processor Pool 1
lp
lp
lp
lp
lp
lp
lp
lp
lp
lp
lp
lp
AIX V6.1
1.5 PrU
AIX V5.3
0.5 PrU
AIX V6.1
1.5 PrU
Linux
0.5 PrU
vp
vp
vp
vp
vp
vp
lp
lp
lp
lp
lp
lp
AIX V5.3
AIX V6.1
Dedicated processors
Dedicated processors
POWER Hypervisor
8-core SMP System

Chapter 3. Virtualization
117
Dedicated mode
In dedicated mode, physical processors are assigned as a whole to partitions. The
simultaneous multithreading feature in the POWER7+ processor core allows the core to
execute instructions from two or four independent software threads simultaneously. To
support this feature consider the concept of
logical processors
. The operating system (AIX,
IBM i, or Linux) sees one physical processor as two or four logical processors if the
simultaneous multithreading feature is on. It can be turned off and on dynamically while
the operating system is executing (for AIX, use the smtctl command; for Linux, use the
ppc64_cpu --smt command). If simultaneous multithreading is off, each physical processor
is presented as one logical processor, and thus only one thread.
Shared dedicated mode
On POWER7+ processor technology-based servers, you can configure dedicated partitions
to become processor donors for idle processors that they own, allowing for the donation of
spare CPU cycles from dedicated processor partitions to a shared processor pool. The
dedicated partition maintains absolute priority for dedicated CPU cycles. Enabling this feature
can help to increase system utilization without compromising the computing power for critical
workloads in a dedicated processor.
Shared mode
In shared mode, logical partitions use virtual processors to access fractions of physical
processors. Shared partitions can define any number of virtual processors (the maximum
number is 10 times the number of processing units that are assigned to the partition). From
the POWER Hypervisor perspective, virtual processors represent dispatching objects. The
POWER Hypervisor dispatches virtual processors to physical processors according to the
partition’s processing units entitlement. One processing unit represents one physical
processor’s processing capacity. At the end of the POWER Hypervisor’s dispatch cycle
(10 ms), all partitions receive total CPU time equal to their processing unit’s entitlement. The
logical processors are defined on top of virtual processors. So, even with a virtual processor,
the concept of a logical processor exists and the number of logical processors depends
whether the simultaneous multithreading is turned on or off.
3.4.3 Multiple shared processor pools
Multiple shared processor pools (MSPPs) is a capability that is supported on POWER6,
POWER6+, POWER7, and POWER7+ processor-based servers. This capability allows a
system administrator to create a set of micropartitions with the purpose of controlling the
processor capacity that can be consumed from the physical shared processor pool.

118
IBM Power 710 and 730 Technical Overview and Introduction
Implementing MSPPs depends on a set of underlying techniques and technologies.
Figure 3-8 is an overview of the architecture of multiple shared processor pools.
Figure 3-8 Overview of the architecture of multiple shared processor pools
Micropartitions are created and then identified as members of either the default shared
processor pool
0
or a user-defined shared processor pool
n
. The virtual processors that exist
within the set of micropartitions are monitored by the POWER Hypervisor, and processor
capacity is managed according to user-defined attributes.
If the Power Systems server is under heavy load, each micropartition within a shared
processor pool is guaranteed its processor entitlement plus any capacity that it might be
allocated from the reserved pool capacity if the micropartition is uncapped.
If certain micropartitions in a shared processor pool do not use their capacity entitlement, the
unused capacity is ceded and other uncapped micropartitions within the same shared
processor pool are allocated the additional capacity according to their uncapped weighting. In
this way, the entitled pool capacity of a shared processor pool is distributed to the set of
micropartitions within that shared processor pool.
All Power Systems servers that support the multiple shared processor pools capability have a
minimum of one (the default) shared processor pool and up to a maximum of 64 shared
processor pools.
POWER Hypervisor
p1
p0
Physical Shared-Processor Pool
p2
p3
p4
p5
p6
p7
Shared Processor Pool
0
Set of micro-partitions
AIX V5.3
EC 1.6
AIX V6.1
EC 0.8
Linux
EC 0.5
vp0
vp1
vp2
vp3
vp4
AIX V6.1
EC 1.6
AIX V6.1
EC 0.8
Linux
EC 0.5
vp5
vp6
vp7
vp8
vp9
vp10
Shared Processor Pool
1
Set of micro-partitions
Unused capacity in SPP
0
is
redistributed to uncapped
micro-partitions within SPP
0
Unused capacity in SPP
1
is
redistributed to uncapped
micro-partitions within SPP
1
KEY
:
EC Entitled Capacity
p Physical processor
vp Virtual processor
SPPn Shared-Processor Pool
n

Chapter 3. Virtualization
119
Default shared processor pool (SPP
0
)
On any Power Systems server supporting multiple shared processor pools, a default shared
processor pool is always automatically defined. The default shared processor pool has a pool
identifier of zero (SPP-ID = 0) and can also be referred to as SPP
0
. The default shared
processor pool has the same attributes as a user-defined shared processor pool except that
these attributes are not directly under the control of the system administrator. They have fixed
values (Table 3-4).
Table 3-4 Attribute values for the default shared processor pool (SPP
0
)
Creating multiple shared processor pools
The default shared processor pool (SPP
0
) is automatically activated by the system and is
always present.
All other shared processor pools exist, but by default are inactive. By changing the maximum
pool capacity of a shared processor pool to a value greater than zero, it becomes active and
can accept micropartitions (either transferred from SPP
0
or newly created).
Levels of processor capacity resolution
The following two levels of processor capacity resolution are implemented by the POWER
Hypervisor and multiple shared processor pools:
Level
0
This first level is the resolution of capacity within the same shared processor pool. Unused
processor cycles from within a shared processor pool are harvested and then redistributed
to any eligible micropartition within the same shared processor pool.
Level
1
This second level is after all first level capacity is resolved. When all Level
0
capacity has
been resolved within the multiple shared processor pools, the POWER Hypervisor
harvests unused processor cycles and redistributes them to eligible micropartitions
regardless of the multiple shared processor pools structure.
SPP
0
attribute
Value
Shared processor pool ID 0
Maximum pool capacity Value is equal to the capacity in the physical shared processor pool.
Reserved pool capacity 0
Entitled pool capacity Sum (total) of the entitled capacities of the micropartitions in the
default shared processor pool.

120
IBM Power 710 and 730 Technical Overview and Introduction
Figure 3-9 shows the levels of unused capacity redistribution that are implemented by the
POWER Hypervisor.
Figure 3-9 The levels of unused capacity redistribution
Capacity allocation above the entitled pool capacity (Level
1
)
The POWER Hypervisor initially manages the entitled pool capacity at the shared processor
pool level. This level is where unused processor capacity within a shared processor pool is
harvested and then redistributed to uncapped micropartitions within the same shared
processor pool. This level of processor capacity management is sometimes referred to as
Level
0
capacity resolution.
At a higher level, the POWER Hypervisor harvests unused processor capacity from the
multiple shared processor pools that do not consume all of their entitled pool capacity. If a
particular shared processor pool is heavily loaded and several of the uncapped
micropartitions within it require additional processor capacity (above the entitled pool
capacity), then the POWER Hypervisor redistributes some of the extra capacity to the
uncapped micropartitions. This level of processor capacity management is sometimes
referred to as Level
1
capacity resolution.
POWER Hypervisor
SPP
n
SPP
2
SPP
1
SPP
0
Micro-partition
n
SPP
2
capacity
resolution
SPP
n
capacity
resolution
SPP
1
capacity
resolution
SPP
0
capacity
resolution
Physical Shared Processor Pool
p0
p1
p2
p3
p4
p5
Level
1
capacity
resolution
Level
1
capacity resolution
POWER Hypervisor harvests unused
processor capacity from Shared-Processor
Pools and redistributes it across all
uncapped micro-partitions regardless of the
Shared-Processor Pool structure
Level
0
capacity resolution
Resolution of the Entitled Pool Capacity
within the same Shared-Processor Pool
Level
0
capacity
resolution
Micro-partition
0
Micro-partition
1
Micro-partition
2
Micro-partition
3
Micro-partition
n

Chapter 3. Virtualization
121
To redistribute unused processor capacity to uncapped micropartitions in multiple shared
processor pools above the entitled pool capacity, the POWER Hypervisor uses a higher level
of redistribution, Level
1
.
Where there is unused processor capacity in under-utilized shared processor pools,
the micropartitions within the shared processor pools cede the capacity to the
POWER Hypervisor.
In busy shared processor pools, where the micropartitions used all of the entitled pool
capacity, the POWER Hypervisor allocates additional cycles to micropartitions, in which
all
of
the following statements are true:
The maximum pool capacity of the shared processor pool that is hosting the micropartition
is not met.
The micropartition is uncapped.
The micropartition has enough virtual-processors to take advantage of the
additional capacity.
Under these circumstances, the POWER Hypervisor allocates additional processor capacity
to micropartitions on the basis of their uncapped weights, independent of the shared
processor pool that hosts the micropartitions. This behavior can be referred to as Level
1

capacity resolution. Consequently, when allocating additional processor capacity in excess of
the entitled pool capacity of the shared processor pools, the POWER Hypervisor takes the
uncapped weights of all micropartitions in the system into account, regardless of the multiple
shared processor pool structure.
Dynamic adjustment of maximum pool capacity
The maximum pool capacity of a shared processor pool, other than the default shared
processor pool
0
, can be adjusted dynamically from the managed console, using either the
graphical interface or the command-line interface (CLI).
Dynamic adjustment of reserved pool capacity
The reserved pool capacity of a shared processor pool, other than the default shared
processor pool
0
, can be adjusted dynamically from the managed console, by using either the
graphical interface or the CLI.
Dynamic movement between shared processor pools
A micropartition can be moved dynamically from one shared processor pool to another by
using the managed console with either the graphical interface or the CLI. Because the entitled
pool capacity is partly made up of the sum of the entitled capacities of the micropartitions,
removing a micropartition from a shared processor pool reduces the entitled pool capacity for
that shared processor pool. Similarly, the entitled pool capacity of the shared processor pool
that the micropartition joins will increase.
Level
1
capacity resolution: When allocating additional processor capacity in excess of
the entitled pool capacity of the shared processor pool, the POWER Hypervisor takes the
uncapped weights of
all micropartitions in the system
into account,
regardless of the
multiple shared processor pool structure
.

122
IBM Power 710 and 730 Technical Overview and Introduction
Deleting a shared processor pool
Shared processor pools cannot be deleted from the system. However, they are deactivated by
setting the maximum pool capacity and the reserved pool capacity to zero. The shared
processor pool will still exist but will not be active. Use the managed console interface to
deactivate a shared processor pool. A shared processor pool cannot be deactivated unless all
micropartitions hosted by the shared processor pool have been removed.
Live Partition Mobility and multiple shared processor pools
A micropartition can leave a shared processor pool because of PowerVM Live Partition
Mobility. Similarly, a micropartition can join a shared processor pool in the same way. When
performing PowerVM Live Partition Mobility, you are given the opportunity to designate a
destination shared processor pool on the target server to receive and host the migrating
micropartition.
Because several simultaneous micropartition migrations are supported by PowerVM Live
Partition Mobility, migrating the entire shared processor pool from one server to another is
conceivable.
3.4.4 Virtual I/O Server
The Virtual I/O Server is part of all PowerVM editions. It is a special-purpose partition that
allows the sharing of physical resources between logical partitions to allow more efficient
utilization (for example, consolidation). In this case, the Virtual I/O Server owns the physical
resources (SCSI, Fibre Channel, network adapters, and optical devices) and allows client
partitions to share access to them, thus minimizing the number of physical adapters in the
system. The Virtual I/O Server eliminates the requirement that every partition owns a
dedicated network adapter, disk adapter, and disk drive. The Virtual I/O Server supports
OpenSSH for secure remote logins. It also provides a firewall for limiting access by ports,
network services, and IP addresses. Figure 3-10 shows an overview of a Virtual I/O
Server configuration.
Figure 3-10 Architectural view of the Virtual I/O Server
Virtual I/O Server
Hypervisor
Shared Ethernet
Adapter
Physical Ethernet
Adapter
Physical Disk
Adapter
Virtual I/O Client 1
Virtual Ethernet
Adapter
Virtual SCSI
Adapter
Virtual I/O Client 2
Virtual Ethernet
Adapter
Virtual SCSI
Adapter
Virtual Ethernet
Adapter
Virtual SCSI
Adapter
Physical
Disk
Physical
Disk
External Network

Chapter 3. Virtualization
123
Because the Virtual I/O Server is an operating system-based appliance server, redundancy
for physical devices attached to the Virtual I/O Server can be provided by using capabilities
such as Multipath I/O and IEEE 802.3ad Link Aggregation.
Installation of the Virtual I/O Server partition is performed from a special system backup DVD
that is provided to clients who order any PowerVM edition. This dedicated software is only for
the Virtual I/O Server (and IVM in case it is used) and is supported only in special Virtual I/O
Server partitions. Three major virtual devices are supported by the Virtual I/O Server:
Shared Ethernet Adapter
Virtual SCSI
Virtual Fibre Channel adapter
The Virtual Fibre Channel adapter is used with the NPIV feature, described in 3.4.10,
“Operating system support for PowerVM” on page 134.
Shared Ethernet Adapter
A Shared Ethernet Adapter (SEA) can be used to connect a physical Ethernet network to a
virtual Ethernet network. The Shared Ethernet Adapter provides this access by connecting
the internal hypervisor VLANs with the VLANs on the external switches. Because the Shared
Ethernet Adapter processes packets at layer 2, the original MAC address and VLAN tags of
the packet are visible to other systems on the physical network. IEEE 802.1 VLAN tagging
is supported.
The Shared Ethernet Adapter also provides the ability for several client partitions to share one
physical adapter. With an SEA, you can connect internal and external VLANs by using a
physical adapter. The Shared Ethernet Adapter service can be hosted only in the Virtual I/O
Server, not in a general-purpose AIX or Linux partition, and acts as a layer-2 network bridge
to securely transport network traffic between virtual Ethernet networks (internal) and one or
more (EtherChannel) physical network adapters (external). These virtual Ethernet network
adapters are defined by the POWER Hypervisor on the Virtual I/O Server.
Tip: A Linux partition can provide bridging function also, by using the brctl command.

124
IBM Power 710 and 730 Technical Overview and Introduction
Figure 3-11 shows a configuration example of an SEA with one physical and two virtual
Ethernet adapters. An SEA can include up to 16 virtual Ethernet adapters on the Virtual I/O
Server that share the same physical access.
Figure 3-11 Architectural view of a Shared Ethernet Adapter
A single SEA setup can have up to 16 virtual Ethernet trunk adapters and each virtual
Ethernet trunk adapter can support up to 20 VLAN networks. Therefore, a possibility is for a
single physical Ethernet to be shared between 320 internal VLAN networks. The number of
shared Ethernet adapters that can be set up in a Virtual I/O Server partition is limited only by
the resource availability, because there are no configuration limits.
Unicast, broadcast, and multicast are supported, so protocols that rely on broadcast or
multicast, such as Address Resolution Protocol (ARP), Dynamic Host Configuration
Protocol (DHCP), Boot Protocol (BOOTP), and Neighbor Discovery Protocol (NDP), can
work on an SEA.
IP address: A Shared Ethernet Adapter does not require a configured IP address to be
able to perform the Ethernet bridging functionality. Configuring IP on the Virtual I/O Server
is convenient because the Virtual I/O Server can then be reached by TCP/IP, for example,
to perform dynamic LPAR operations or to enable remote login. This task can be done
either by configuring an IP address directly on the SEA device or on an additional virtual
Ethernet adapter in the Virtual I/O Server. This task leaves the SEA without the IP address,
allowing for maintenance on the SEA without losing IP connectivity in case SEA failover
is configured.
VIOS
Client 1
Ethernet
switch
VLAN=2 PVID=1
ent3
(sea)
en3
(if.)
en0
(if.)
Client 2
en0
(if.)
ent0
(virt.)
Client 3
en0
(if.)
ent0
(virt.)
ent1
(virt.)
ent2
(virt.)
ent0
(virt.)
VLAN=2
PVID=2
PVID=99
PVID=2
PVID=1
PVID=1
PVID=1
VLAN=1
Hypervisor
External
Network
ent0
(phy.)

Chapter 3. Virtualization
125
Virtual SCSI
Virtual SCSI is used to see a virtualized implementation of the SCSI protocol. Virtual SCSI is
based on a client/server relationship. The Virtual I/O Server logical partition owns the physical
resources and acts as a server or, in SCSI terms, a target device. The client logical partitions
access the virtual SCSI backing storage devices provided by the Virtual I/O Server as clients.
The virtual I/O adapters (virtual SCSI server adapter and a virtual SCSI client adapter) are
configured using a managed console or through the Integrated Virtualization Manager on
smaller systems. The virtual SCSI server (target) adapter is responsible for executing any
SCSI commands that it receives. It is owned by the Virtual I/O Server partition. The virtual
SCSI client adapter allows a client partition to access physical SCSI and SAN attached
devices and LUNs that are assigned to the client partition. The provisioning of virtual disk
resources is provided by the Virtual I/O Server.
Physical disks that are presented to the Virtual/O Server can be exported and assigned to a
client partition in various ways:
The entire disk is presented to the client partition.
The disk is divided into several logical volumes, which can be presented to a single client
or multiple clients.
As of Virtual I/O Server 1.5, files can be created on these disks, and file-backed storage
devices can be created.
The logical volumes or files can be assigned to separate partitions. Therefore, virtual SCSI
enables sharing of adapters and disk devices.
Figure 3-12 shows an example where one physical disk is divided into two logical volumes by
the Virtual I/O Server. Each client partition is assigned one logical volume, which is then
accessed through a virtual I/O adapter (VSCSI Client Adapter). Inside the partition, the disk is
seen as a normal
hdisk
.
Figure 3-12 Architectural view of virtual SCSI
Client Partition 1
Client Partition 2
I/O Server Partition
POWER Hypervisor
LVM
Physical
Adapter
Hdisk
Hdisk
Logical
Volume 1
Logical
Volume 2
VSCSI
Server
Adapter
VSCSI
Client
Adapter
VSCSI
Client
Adapter
Physical Disk
(SCSI, FC)
VSCSI
Server
Adapter

126
IBM Power 710 and 730 Technical Overview and Introduction
At the time of writing, virtual SCSI supports Fibre Channel, parallel SCSI, iSCSI, SAS, SCSI
RAID devices, and optical devices, including DVD-RAM and DVD-ROM. Other protocols such
as SSA and tape devices are not supported.
For more information about specific storage devices that are supported for Virtual I/O Server,
see the following web page:
http://www14.software.ibm.com/webapp/set2/sas/f/vios/documentation/datasheet.html
N_Port ID Virtualization
N_Port ID Virtualization (NPIV) is a technology that allows multiple logical partitions to access
independent physical storage through the same physical Fibre Channel adapter. This adapter
is attached to a Virtual I/O Server partition that acts only as a pass-through, managing the
data transfer through the POWER Hypervisor.
Each partition that uses NPIV is identified by a pair of unique worldwide port names, enabling
you to connect each partition to independent physical storage on a SAN. Unlike virtual SCSI,
only the client partitions see the disk.
For more information and requirements for NPIV, see the following resources:
PowerVM Migration from Physical to Virtual Storage, SG24-7825
IBM PowerVM Virtualization Managing and Monitoring, SG24-7590
Virtual I/O Server functions
The Virtual I/O Server has many features, including monitoring solutions:
Support for Live Partition Mobility starting on POWER6 processor-based systems with the
PowerVM Enterprise Edition. For more information about Live Partition Mobility, see 3.4.5,
“PowerVM Live Partition Mobility” on page 127.
Support for virtual SCSI devices backed by a file, which are then accessed as standard
SCSI-compliant LUNs.
Support for virtual Fibre Channel devices that are used with the NPIV feature.
Virtual I/O Server Expansion Pack with additional security functions such as Kerberos
(Network Authentication Service for users and client and server applications), Simple
Network Management Protocol (SNMP) v3, and Lightweight Directory Access Protocol
(LDAP) client functionality.
System Planning Tool (SPT) and Workload Estimator, which are designed to ease the
deployment of a virtualized infrastructure. For more information about the System
Planning Tool, see 3.5, “System Planning Tool” on page 137.
IBM Systems Director agent and several preinstalled IBM Tivoli® agents, such as the
following examples:
– Tivoli Identity Manager, to allow easy integration into an existing Tivoli Systems
Management infrastructure
– Tivoli Application Dependency Discovery Manager (ADDM), which creates and
automatically maintains application infrastructure maps including dependencies,
change-histories, and deep configuration values
vSCSI enterprise reliability, availability, serviceability (eRAS).
Additional CLI statistics in svmon, vmstat, fcstat, and topas.
Monitoring solutions to help manage and monitor the Virtual I/O Server and shared
resources. Commands and views provide additional metrics for memory, paging,
processes, Fibre Channel HBA statistics, and virtualization.

Chapter 3. Virtualization
127
For more information about the Virtual I/O Server and its implementation, see PowerVM
Virtualization on IBM System p: Introduction and Configuration Fourth Edition, SG24-7940.
3.4.5 PowerVM Live Partition Mobility
PowerVM Live Partition Mobility allows you to move a running logical partition, including its
operating system and running applications, from one system to another without any shutdown
or without disrupting the operation of that logical partition. Inactive partition mobility allows
you to move a powered-off logical partition from one system to another.
Live Partition Mobility provides systems management flexibility and improves system
availability:
Avoid planned outages for hardware or firmware maintenance by moving logical partitions
to another server and then performing the maintenance. Live Partition Mobility can help
lead to zero downtime maintenance because you can use it to work around scheduled
maintenance activities.
Avoid downtime for a server upgrade by moving logical partitions to another server and
then performing the upgrade. This approach allows your users to continue their work
without disruption.
Avoid unplanned downtime. With preventive failure management, if a server indicates a
potential failure, you can move its logical partitions to another server before the failure
occurs. Partition mobility can help avoid unplanned downtime.
Take advantage of server optimization:
– Consolidation: You can consolidate workloads that run on several small, under-used
servers onto a single large server.
– Deconsolidation: You can move workloads from server to server to optimize resource
use and workload performance within your computing environment. With active
partition mobility, you can manage workloads with minimal downtime.
Hardware and operating system requirements for Live Partition Mobility
PowerVM Live Partition Mobility requires systems with POWER6 or newer processors to run
PowerVM Enterprise Edition and is supported for partitions running the following levels of
operating systems:
AIX 5.3 TL7 or later
IBM i 7.1 TR4 or later
SUSE Linux Enterprise Server 10 Service Pack 4 or later
Red Hat Enterprise Linux version 5 Update 1 or later
The Virtual I/O Server partition itself cannot be migrated.
Source and destination system requirements
The source partition must be one that has only virtual devices. If there are any physical
devices in its allocation, they must be removed before the validation or migration is initiated.
An N_Port ID Virtualization (NPIV) device is considered virtual and is compatible with
partition migration.
The hypervisor must support the Live Partition Mobility functionality (also called migration
process) that is available on POWER6, POWER6+, POWER7 and POWER7+
Requirement for IBM i: Live Partition Mobility on IBM i is not supported on POWER6 or
POWER6+-based servers.

128
IBM Power 710 and 730 Technical Overview and Introduction
processor-based hypervisors. Firmware must be at firmware level eFW3.2 or later. All
POWER7+ processor-based hypervisors support Live Partition Mobility. Source and
destination systems can have separate firmware levels, but they must be compatible with
each other.
A possibility is to migrate partitions back and forth between POWER6, POWER6+, POWER7
and POWER7+ processor-based servers. Partition Mobility uses the POWER6 or POWER6+
Compatibility Modes that are provided by POWER7 and POWER7+ processor-based servers.
On the POWER7+ processor-based server, the migrated partition is then executing in
POWER6 or POWER6+ Compatibility Mode.
If you want to move an active logical partition from a POWER6 processor-based server to a
POWER7+ processor-based server so that the logical partition can take advantage of the
additional capabilities available with the POWER7+ processor, use the following steps:
1.Set the partition-preferred processor compatibility mode to the default mode. When you
activate the logical partition on the POWER6 or POWER6+ processor-based server, it
runs in the POWER6 or POWER6+ mode.
2.Move the logical partition to the POWER7+ processor-based server. Both the current
and preferred modes remain unchanged for the logical partition until you restart the
logical partition.
3.Restart the logical partition on the POWER7+ processor-based server. The hypervisor
evaluates the configuration. Because the preferred mode is set to default and the logical
partition now runs on a POWER7+ processor-based server, the highest mode available
is the POWER7+ mode. The hypervisor determines that the most fully featured mode
that is supported by the operating environment that is installed in the logical partition is
the POWER7 mode and changes the current mode of the logical partition to the
POWER7 mode.
Now the current processor compatibility mode of the logical partition is the POWER7 mode,
and the logical partition runs on the POWER7+ processor-based server.
The Virtual I/O Server on the source system provides the access to the client resources and
must be identified as a mover service partition (MSP). The Virtual Asynchronous Services
Interface (VASI) device allows the mover service partition to communicate with the hypervisor.
It is created and managed automatically by the managed console and will be configured on
both the source and destination Virtual I/O Servers, which are designated as the mover
service partitions for the mobile partition, to participate in active mobility. Other requirements
include a similar time-of-day on each server, systems must not be running on battery power,
and shared storage (external hdisk with reserve_policy=no_reserve). In addition, all logical
partitions must be on the same open network with RMC established to the managed console.
The managed console is used to configure, validate, and orchestrate. You use the managed
console to configure the Virtual I/O Server as an MSP and to configure the VASI device. A
managed console wizard validates your configuration and identifies issues that can cause
Support of both processors: Because POWER7+ and POWER7 use the same
Instruction Set Architecture (ISA), they are equivalent regarding partition mobility, that is
POWER7 Compatibility Mode supports both POWER7 and POWER7+ processors.
Tip: The following web page offers presentations of the supported migrations:
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/p7hc3/iphc3p
cmcombosact.htm

Chapter 3. Virtualization
129
the migration to fail. During the migration, the managed console controls all phases of
the process.
Improved Live Partition Mobility benefits
The possibility to move partitions between POWER6, POWER6+, POWER7, and POWER7+
processor-based servers greatly facilitates the deployment of POWER7+ processor-based
servers, as follows:
Installation of the new server can be done while the application is executing on a
POWER6, POWER6+, or POWER7 server. After the POWER7+ processor-based server
is ready, the application can be migrated to its new hosting server without application
down time.
When adding POWER7+ processor-based servers to a POWER6, POWER6+, and
POWER7 environment, you have the additional flexibility to perform workload balancing
across the entire set of POWER6, POWER6+, POWER7, and POWER7+
processor-based servers.
When doing server maintenance, you have the additional flexibility to use POWER7
Servers for hosting applications, usually hosted on POWER7+ processor-based servers,
allowing you to perform this maintenance with no interruption to application availability.
For more information about Live Partition Mobility and how to implement it, see IBM PowerVM
Live Partition Mobility, SG24-7460.
3.4.6 Active Memory Sharing
Active Memory Sharing is an IBM PowerVM advanced memory virtualization technology that
provides system memory virtualization capabilities to IBM Power Systems, allowing multiple
partitions to share a common pool of physical memory.
Active Memory Sharing is available only with the Enterprise version of PowerVM.
The physical memory of an IBM Power System can be assigned to multiple partitions in either
dedicated or shared mode. The system administrator has the capability to assign some
physical memory to a partition and some physical memory to a pool that is shared by other
partitions. A single partition can have either dedicated or shared memory:
With a pure dedicated memory model, the system administrator’s task is to optimize
available memory distribution among partitions. When a partition suffers degradation
because of memory constraints and other partitions have unused memory, the
administrator can manually issue a dynamic memory reconfiguration.
With a shared memory model, the system automatically decides the optimal distribution of
the physical memory to partitions and adjusts the memory assignment based on partition
load. The administrator reserves physical memory for the shared memory pool, assigns
partitions to the pool, and provides access limits to the pool.
Active Memory Sharing can be used to increase memory utilization on the system either by
decreasing the global memory requirement or by allowing the creation of additional partitions
on an existing system. Active Memory Sharing can be used in parallel with Active Memory
Expansion on a system running a mixed workload of several operating system. For example,
AIX partitions can take advantage of Active Memory Expansion. Other operating systems
take advantage of Active Memory Sharing also.
For additional information regarding Active Memory Sharing, see PowerVM Virtualization
Active Memory Sharing, REDP-4470.

130
IBM Power 710 and 730 Technical Overview and Introduction
3.4.7 Active Memory Deduplication
In a virtualized environment, the systems might have a considerable amount of duplicated
information that is stored on RAM after each partition has its own operating system, and
some of them might even share the same kinds of applications. On heavily loaded systems,
this behavior might lead to a shortage of the available memory resources, forcing paging by
the Active Memory Sharing partition operating systems, the Active Memory Deduplication
pool, or both, which might decrease overall system performance.
Figure 3-13 shows the standard behavior of a system without Active Memory Deduplication
enabled on its Active Memory Sharing (shown as AMS in the figure) shared memory pool.
Identical pages within the same or different LPARs each require their own unique physical
memory page, consuming space with repeated information.
Figure 3-13 Active Memory Sharing shared memory pool without Active Memory Deduplication
enabled
Active Memory Deduplication allows the hypervisor to dynamically map identical partition
memory pages to a single physical memory page within a shared memory pool. This way
enables a better utilization of the Active Memory Sharing shared memory pool, increasing the
system’s overall performance by avoiding paging. Deduplication can cause the hardware to
incur fewer cache misses, which also leads to improved performance.
D
U
D
D
D
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
D
U
U
U
U
U
U
U
D
D
U
U
U
U
U
U
U
D
U
U
U
Without
Active Memory
Deduplication
Mappings
AMS shared memory pool
LPAR1
Logical Memory
LPAR2
Logical Memory
LPAR3
Logical Memory
D
U
Duplicate pages
Unique pages
KEY
:

Chapter 3. Virtualization
131
Figure 3-14 shows the behavior of a system with Active Memory Deduplication enabled on its
Active Memory Sharing shared memory pool. Duplicated pages from separate LPARs are
stored only once, providing the Active Memory Sharing pool with more free memory.
Figure 3-14 Identical memory pages mapped to a single physical memory page with Active Memory
Duplication enabled
Active Memory Deduplication depends on the Active Memory Sharing feature to be available,
and consumes CPU cycles donated by the Active Memory Sharing pool’s Virtual I/O Server
(VIOS) partitions to identify deduplicated pages. The operating systems that are running on
the Active Memory Sharing partitions can “hint” to the PowerVM Hypervisor that some pages
(such as frequently referenced read-only code pages) are particularly good for deduplication.
To perform deduplication, the hypervisor cannot compare every memory page in the Active
Memory Sharing pool with every other page. Instead, it computes a small signature for each
page that it visits and stores the signatures in an internal table. Each time that a page is
inspected, a look-up of its signature is done in the known signatures in the table. If a match is
found, the memory pages are compared to be sure that the pages are really duplicates. When
a duplicate is found, the hypervisor remaps the partition memory to the existing memory page
and returns the duplicate page to the Active Memory Sharing pool.
D
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
D
U
U
U
U
U
U
U
D
D
U
U
U
U
U
U
U
D
U
U
U
With
Active Memory
Deduplication
Mappings
AMS shared memory pool
LPAR1
Logical Memory
LPAR2
Logical Memory
LPAR3
Logical Memory
D
U
Duplicate pages
Unique pages
KEY
:
Free

132
IBM Power 710 and 730 Technical Overview and Introduction
Figure 3-15 shows two pages being written in the Active Memory Sharing memory pool and
having their signatures matched on the deduplication table.
Figure 3-15 Memory pages having their signatures matched by Active Memory Deduplication
From the LPAR perspective, the Active Memory Deduplication feature is completely
transparent. If an LPAR attempts to modify a deduplicated page, the hypervisor grabs a free
page from the Active Memory Sharing pool, copies the duplicate page contents into the new
page, and maps the LPAR’s reference to the new page so that the LPAR can modify its own
unique page.
System administrators can dynamically configure the size of the deduplication table, ranging
from 1/8192 to 1/256 of the configured maximum Active Memory Sharing memory pool size.
Having this table be too small might lead to missed deduplication opportunities. Conversely,
having a table that is too large might waste a small amount of overhead space.
The management of the Active Memory Deduplication feature is done through a managed
console, allowing administrators to take the following steps:
Enable and disable Active Memory Deduplication at an Active Memory Sharing pool level.
Display deduplication metrics.
Display and modify the deduplication table size.
AMS
Memory
Pool
Page A
Dedup
Table
Sign A
Signature
Function
AMS
Memory
Pool
Page A
Dedup
Table
Sign A
Signature
Function
Page B
S
i
g
n
at
ur
e
F
u
n
c
t
i
o
n
Signature of Page A being written
on the Deduplication Table
Signature of Page B matching
Sign A on the Deduplication Table

Chapter 3. Virtualization
133
Figure 3-16 shows the Active Memory Deduplication being enabled to a shared memory pool.
Figure 3-16 Enabling the Active Memory Deduplication for a shared memory pool
The Active Memory Deduplication feature requires the following minimum components:
PowerVM Enterprise edition
System firmware level 740
AIX Version 6: AIX 6.1 TL7 or later
AIX Version 7: AIX 7.1 TL1 SP1 or later
IBM i: 7.14 or 7.2 or later
SLES 11 SP2 or later
RHEL 6.2 or later
3.4.8 Dynamic Platform Optimizer
Dynamic Platform Optimizer (DPO) is an IBM PowerVM feature that helps the user to
configure the logical partition memory and CPU affinity on the POWER7+ processor-based
servers, thus, improve performance under some workload scenarios.
On a nonuniform memory access (NUMA) context, the main goal of the DPO is to assign a
local memory to the CPUs, thus, reducing the memory access time, because a local memory
access is much faster than a remote access.
Accessing remote memory on a NUMA environment is expensive, although common, mainly
if the system did a partition migration, or even, if logical partitions are created, suspended,
and destroyed frequently, as happens frequently in a cloud environment. In this context, DPO
tries to swap remote memory with local memory to the CPU.

134
IBM Power 710 and 730 Technical Overview and Introduction
Launch Dynamic Platform Optimizer through the HMC command-line interface with the
optmem command (see Example 3-1). The lsoptmem command is able to show important
information about current and predicted memory affinity, and also monitor the status of a
running optimization process.
Example 3-1 Launching DPO for an LPAR 1
#optmem -m <managed_system> -t affinity -o start
For more information about DPO, see IBM PowerVM Virtualization Managing and Monitoring,
SG24-7590.
3.4.9 Dynamic System Optimizer
Dynamic System Optimizer (DSO) is a PowerVM and AIX feature that autonomously tunes
the allocation of system resources to achieve an improvement in system performance. It
works by continuously monitoring, through a user space daemon, and analyzing how current
workloads impact the system, and then using this information to dynamically reconfigure the
system to optimize for current workload requirements. DSO also interacts with POWER7
Performance Monitoring Unit (PMU) to discover the best affinity and page size for the
machine workload.
3.4.10 Operating system support for PowerVM
Table 3-5 summarizes the PowerVM features that are supported by the operating systems
compatible with the POWER7+ processor-based servers.
Table 3-5 Virtualization features supported by AIX, IBM i and Linux
TIP: While the DPO process is running, the affected LPARs can have up to 20%
performance degradation. To explicitly protect partitions from DPO, use the -x or --xid
options of the optmem command.
Note: Single-socket systems do not require DPO, and there is no performance penalty
when accessing memory in the same card.
Feature
AIX
5.3
AIX
6.1
AIX
7.1
IBMi
6.1.1
IBMi
7.1
RHEL
5.8
RHEL
6.3
SLES 10
SP4
SLES 11
SP2
Virtual SCSI Yes Yes Yes Yes Yes Yes Yes Yes Yes
Virtual Ethernet Yes Yes Yes Yes Yes Yes Yes Yes Yes
Shared Ethernet Adapter Yes Yes Yes Yes Yes Yes Yes Yes Yes
Virtual Fibre Channel Yes Yes Yes Yes Yes Yes Yes Yes Yes
Virtual Tape Yes Yes Yes Yes Yes Yes Yes Yes Yes
Logical partitioning Yes Yes Yes Yes Yes Yes Yes Yes Yes
DLPAR I/O adapter
add/remove
Yes Yes Yes Yes Yes Yes Yes Yes Yes
DLPAR processor
add/remove
Yes Yes Yes Yes Yes Yes Yes Yes Yes

Chapter 3. Virtualization
135
3.4.11 Linux support
IBM Linux Technology Center (LTC) contributes to the development of Linux by providing
support for IBM hardware in Linux distributions. In particular, the LTC has available tools and
code to the Linux communities to take advantage of the POWER7+ technology and develop
POWER7+ optimized software.
DLPAR memory add Yes Yes Yes Yes Yes Yes Yes Yes Yes
DLPAR memory remove Yes Yes Yes Yes Yes No Yes No Yes
Micro-Partitioning Yes Yes Yes Yes Yes Yes
a
Yes
b
Yes
a
Yes
Shared dedicated capacity Yes Yes Yes Yes Yes Yes Yes Yes Yes
Multiple Shared Processor
Pools
Yes Yes Yes Yes Yes Yes Yes Yes Yes
Virtual I/O Server Yes Yes Yes Yes Yes Yes Yes Yes Yes
Integrated Virtualization
Manager
Yes Yes Yes Yes Yes Yes Yes Yes Yes
Suspend and resume No Yes Yes No Yes
c
Yes Yes No No
Shared Storage Pools Yes Yes Yes Yes Yes
d
Yes Yes Yes No
Thin provisioning Yes Yes Yes Yes
e
Yes
e
Yes Yes Yes No
Active Memory Sharing No Yes Yes Yes Yes No Yes No Yes
Active Memory
Deduplication
No Yes
f
Yes
g
No Yes
h
No Yes No Yes
Live Partition Mobility Yes Yes Yes No Yes
i
Yes Yes Yes Yes
Simultaneous
multithreading (SMT)
Yes
j
Yes
k
Yes Yes
l
Yes Yes
j
Yes Yes
j
Yes
Active Memory Expansion No Yes
m
Yes No No No No No No
Capacity on Demand
n
Yes Yes Yes Yes Yes Yes Yes Yes Yes
AIX Workload Partitions No Yes Yes No No No No No No
a. This version can only support 10 virtual machines per core.
b. Need RHEL 6.3 Errata upgrade to support 20 virtual machines per core.
c. Requires IBM i 7.1 TR2 with PTF SI39077 or later.
d. Requires IBM i 7.1 TR1.
e. Will become fully provisioned device when used by IBM i.
f. Requires AIX 6.1 TL7 or later.
g. Requires AIX 7.1 TL1 or later.
h. Requires IBM i 7.1.4 or later.
i. Requires IBM i 7.1 TR4 PTF group or later. Access this link for more details: http://bit.ly/11im9sa
j. Only supports two threads.
k. AIX 6.1 up to TL4 SP2 only supports two threads, and supports four threads as of TL4 SP3.
l. IBM i 6.1.1 and up support SMT4.
m. On AIX 6.1 with TL4 SP2 and later.
n. Available on selected models.
Feature
AIX
5.3
AIX
6.1
AIX
7.1
IBMi
6.1.1
IBMi
7.1
RHEL
5.8
RHEL
6.3
SLES 10
SP4
SLES 11
SP2

136
IBM Power 710 and 730 Technical Overview and Introduction
Table 3-6 lists the support of specific programming features for various versions of Linux.
Table 3-6 Linux support for POWER7 features
See the following sources for information:
Advance Toolchain:
http://ibm.co/106nMYI
Release notes:
– ftp://linuxpatch.ncsa.uiuc.edu/toolchain/at/at05/suse/SLES_11/release_notes.a
t05-2.1-0.html
– ftp://linuxpatch.ncsa.uiuc.edu/toolchain/at/at05/redhat/RHEL5/release_notes.a
t05-2.1-0.html
Features
Linux releases
Comments
SLES 10 SP4
SLES 11 SP2
RHEL 5.8
RHEL 6.3
POWER6
compatibility
mode
Yes Yes Yes Yes -
POWER7 mode No Yes No Yes Take advantage of the
POWER7+ and POWER7
features.
Strong Access
Ordering
No Yes No Yes Can improve Lx86
performance.
Scale to 256
cores/ 1024
threads
No Yes No Yes Base OS support is
available.
Four-way SMT No Yes No Yes Better hardware usage.
VSX support No Yes No Yes Full exploitation requires
Advance Toolchain.
Distro toolchain
mcpu/mtune=p7
No Yes No Yes SLES11/GA toolchain has
minimal P7 enablement
necessary to support
kernel build.
Advance
Toolchain support
Yes, execution
restricted to
Power6
instructions
Yes Yes, execution
restricted to
Power6
instructions
Yes Alternative GNU Toolchain
that explores the
technologies available on
POWER architecture.
64 KB base page
size
No Yes Yes Yes Better memory utilization,
and smaller footprint.
Tickless idle No Yes No Yes Improved energy utilization
and virtualization of
partially to fully idle
partitions.

Chapter 3. Virtualization
137
3.5 System Planning Tool
The IBM System Planning Tool (SPT) helps you design systems to be partitioned with logical
partitions. You can also plan for and design non-partitioned systems by using the SPT. The
resulting output of your design is called a
system plan
, which is stored in a .sysplan file. This
file can contain plans for a single system or multiple systems. The .sysplan file can be used
for the following reasons:
To create reports
As input to the IBM configuration tool (e-Config)
To create and deploy partitions on your system (or systems) automatically
System plans that are generated by the SPT can be deployed on the system by the Hardware
Management Console (HMC), or Integrated Virtualization Manager (IVM).
You can create an entirely new system configuration, or you can create a system
configuration based on any of the following items:
Performance data from an existing system that the new system is to replace
Performance estimates that anticipates future workloads that you must support
Sample systems that you can customize to fit your needs
Integration between the System Planning Tool and both the Workload Estimator and IBM
Performance Management allows you to create a system that is based on performance and
capacity data from an existing system or that is based on new workloads that you specify.
You can use the SPT before you order a system to determine what you must order to support
your workload. You can also use the SPT to determine how you can partition a system that
you already have.
Using the SPT is an effective way of documenting and backing up key system settings and
partition definitions. With it, the user can create records of systems and export them to their
personal workstation or backup system of choice. These same backups can then be imported
back onto the same managed console when needed. This step can be useful when cloning
systems. enabling the user to import the system plan to any managed console multiple times.
The SPT and its supporting documentation is on the IBM System Planning Tool site:
http://www.ibm.com/systems/support/tools/systemplanningtool/
Automatically deploy: Ask your IBM representative or IBM Business Partner to use the
Customer Specified Placement manufacturing option if you want to automatically deploy
your partitioning environment on a new machine. SPT looks for the resource’s allocation to
be the same as that specified in your .sysplan file.

138
IBM Power 710 and 730 Technical Overview and Introduction
3.6 New PowerVM version 2.2.2 features
Power Systems server coupled with PowerVM technology are designed to help clients build a
dynamic infrastructure, reducing costs, managing risk, and improving services levels.
IBM PowerVM V2.2.2 includes VIOS 2.2.2.1-FP26, HMC V7R7.6 and Power Systems
firmware level 760, and contains the following enhancements for managing a PowerVM
virtualization environment:
Supports up to 20 partitions per processor, doubling the number of partitions that are
supported for each processor. This way provides additional flexibility by reducing the
minimum processor entitlement to 5% of a processor.
Dynamically add virtual I/O adapters to or dynamically remove them from a Virtual I/O
Server partition
HMC V7R7.6 or later automatically runs the add or remove command (cfgdev or rmdev) on
the Virtual I/O Server for the user. Prior to this enhancement, the user had to manually run
these commands on the Virtual I/O Server.
The user can specify the destination Fibre Channel port for any or all virtual Fibre Channel
adapters.
Virtual I/O Server setup, tuning, and validation is improved by using the Runtime Expert.
Live Partition Mobility supports up to 16 concurrent LPM activities.
Shared Storage Pools create pools of storage for virtualized workloads, and can improve
storage utilization, simplify administration, and reduce SAN infrastructure costs. The
enhancements capabilities enable 16 nodes to partecipate in a Shared Pool configuration,
which can improve efficiency, agility, scalability, flexibility, and availability.
Shared Storage Pools flexibility and availability improvements include the following items:
– IPv6 and VLAN tagging (IEEE 802.1Q) support for intermodal shared storage pools
communication.
– Cluster reliability and availability improvements.
– Improved storage utilization statistics and reporting.
– Nondisruptive rolling upgrades for applying service.
– Advanced features that accelerate partition deployment, optimize storage utilization,
and improve availability through automation.
New VIOS Performance Advisor analyzes Virtual I/O Server performance, and makes
reccomandations for performance optimization.
PowerVM includes the following new advanced features, enabled by VMControl, that
accelerate partition deployment, optimize storage utilization and improve availability
through automation:
– Linked clones allow for sharing of partition images, which greatly accelerates partition
deployment and reduces the storage usage.
– System pool management for IBM workload provides increased flexibility and resource
utilization.
For further details about the appropriate System Director VMControl release, go to the
following location:
http://www.ibm.com/systems/software/director/vmcontrol

© Copyright IBM Corp. 2013. All rights reserved.
139
Chapter 4.
Continuous availability and
manageability
This chapter provides information about IBM reliability, availability, and serviceability (RAS)
design and features. This set of technologies, implemented on IBM Power Systems servers,
improves your architecture’s total cost of ownership (TCO) by reducing planned and
unplanned down time.
The elements of RAS can be described as follows:
Reliability: Indicates how infrequently a defect or fault in a server occurs
Availability: Indicates how infrequently the functionality of a system or application is
impacted by a fault or defect
Serviceability: Indicates how well faults and their effects are communicated to system
managers and how efficiently and nondisruptively the faults are repaired
Each successive generation of IBM servers is designed to be more reliable than the previous
server family. POWER7+ processor-based servers have new features to support new levels of
virtualization, help ease administrative burden, and increase system utilization.
Reliability starts with components, devices, and subsystems designed to be fault-tolerant.
POWER7+ uses lower voltage technology, improving reliability with stacked latches to reduce
soft error susceptibility. During the design and development process, subsystems go through
rigorous verification and integration testing processes. During system manufacturing,
systems go through a thorough testing process to help ensure high product quality levels.
The processor and memory subsystem contain features that are designed to avoid or correct
environmentally induced, single-bit, intermittent failures. The features can also handle solid
faults in components, including selective redundancy to tolerate certain faults without
requiring an outage or parts replacement.
4

140
IBM Power 710 and 730 Technical Overview and Introduction
4.1 Reliability
Highly reliable systems are built with highly reliable components. On IBM POWER
processor-based systems, this basic principle is expanded upon with a clear design for
reliability architecture and methodology. A concentrated, systematic, architecture-based
approach is designed to improve overall system reliability with each successive generation of
system offerings.
4.1.1 Designed for reliability
Systems that are designed with fewer components and interconnects have fewer
opportunities to fail. Simple design choices such as integrating processor cores on a single
POWER chip can dramatically reduce the opportunity for system failures. In this case, an
8-core server can include one quarter as many processor chips (and chip socket interfaces)
as with a dual core processor design. Not only does this case reduce the total number of
system components, it reduces the total amount of heat that is generated in the design,
resulting in an additional reduction in required power and cooling components. POWER7+
processor-based servers also integrate L3 cache into the processor chip for a higher
integration of parts.
Parts selection also plays a critical role in overall system reliability. IBM uses three grades of
components with grade 3 being defined as industry standard (“off-the-shelf” components). As
shown in Figure 4-1, using stringent design criteria and an extensive testing program, the IBM
manufacturing team can produce grade 1 components that are expected to be 10 times more
reliable than industry standard. Engineers select grade 1 parts for the most critical system
components. Newly introduced organic packaging technologies, rated grade 5, achieve the
same reliability as grade 1 parts.
Figure 4-1 Component failure rates
Component failure rates
0
0.2
0.4
0.6
0.8
1
Grade 3 Grade 1 Grade 5

Chapter 4. Continuous availability and manageability
141
4.1.2 Placement of components
Packaging is designed to deliver both high performance and high reliability. For example,
the reliability of electronic components is directly related to their thermal environment. That
is,large decreases in component reliability are directly correlated with relatively small
increases in temperature. All POWER processor-based systems are carefully packaged to
ensure adequate cooling. Critical system components such as the POWER7+ processor
chips are positioned on the planar so that they receive clear air flow during operation. In
addition, POWER processor-based systems are built with redundant, variable-speed fans that
can automatically increase output to compensate for increased heat in the central electronic
complex.
4.1.3 Redundant components and concurrent repair
High-opportunity components (those that most affect system availability
)
are protected with
redundancy and the ability to be repaired concurrently.
The use of these redundant components allows the system to remain operational:
POWER7+ cores, which include redundant bits in L1 instruction and data caches, L2
caches, and L2 and L3 directories
Power 710 and Power 730 main memory DIMMs, which use an innovative ECC algorithm,
from IBM research, that improves bit-error correction and memory failures
Redundant and hot-swap cooling
Redundant and hot-swap power supplies
For maximum availability, be sure to connect power cords from the same system to two
separate power distribution units (PDUs) in the rack, and to connect each PDU to
independent power sources. Tower form factor power cords must be plugged into two
independent power sources to achieve maximum availability.
4.2 Availability
First-failure data capture (FFDC) is the capability of IBM hardware and microcode to
continuously monitor hardware functions. This process includes predictive failure analysis,
which is the ability to track intermittent correctable errors and to take components offline
before they reach the point of hard failure. This way avoids causing a system outage.
The POWER7+ family of systems can do the following automatic functions:
Self-diagnose and self-correct errors during run time.
Automatically reconfigure to mitigate potential problems from suspect hardware.
Self-heal or automatically substitute good components for failing components.
Before ordering: Check your configuration for optional redundant components before
ordering your system.
Remember: Error detection and fault isolation is independent of the operating system in
POWER7+ processor-based servers.

142
IBM Power 710 and 730 Technical Overview and Introduction
This chapter describes IBM POWER7+ processor-based systems technologies, focused on
keeping a system running. For a specific set of functions that are focused on detecting errors
before they become serious enough to stop computing work, see 4.3.1, “Detecting” on
page 149.
4.2.1 Partition availability priority
POWER7+ systems can assign availability priorities to partitions. If the system detects that a
processor core is about to fail, it is taken offline. If the partitions on the system require more
processor units than remain in the system, the firmware determines which partition has the
lowest priority and attempts to claim the needed resource. On a properly configured POWER
processor-based server, this capability allows the system manager to ensure that capacity is
first obtained from a low-priority partition instead of a high-priority partition.
This capability gives the system an additional stage before an unplanned outage. If
insufficient resources exist to maintain full system availability, the server attempts to
maintain partition availability according to user-defined priority.
Partition availability priority is assigned to partitions by using a
weight value
or integer rating.
The lowest priority partition is rated at 0 (zero) and the highest priority partition is rated at
255. The default value is set to 127 for standard partitions and 192 for Virtual I/O Server
(VIOS) partitions. You can vary the priority of individual partitions through the hardware
management console.
4.2.2 General detection and deallocation of failing components
Runtime correctable or recoverable errors are monitored to determine whether there is a
pattern of errors. If these components reach a predefined error limit, the service processor
initiates an action to deconfigure the faulty hardware, helping to avoid a potential system
outage and to enhance system availability.
Persistent deallocation
To enhance system availability, a component that is identified for deallocation or
deconfiguration on a POWER processor-based system is flagged for persistent deallocation.
Component removal can occur either dynamically (while the system is running) or at boot
time (IPL), depending both on the type of fault and when the fault is detected.
In addition, unrecoverable hardware faults can be deconfigured from the system after the first
occurrence. The system can be rebooted immediately after failure and resume operation on
the remaining stable hardware. This way prevents the faulty hardware from affecting system
operation again; the repair action is deferred to a more convenient, less critical time.
The following components have the capability to be persistently deallocated:
Processor
L2 and L3 cache lines (Cache lines are dynamically deleted.)
Memory
Deconfigure or bypass failing I/O adapters
Processor instruction retry
As introduced with the POWER6 technology, the POWER7+ processor can retry processor
instructions and do alternate processor recovery for several core-related faults. In this way,
exposure to both permanent and intermittent errors in the processor core are significantly
reduced.

Chapter 4. Continuous availability and manageability
143
Intermittent errors are generally not repeatable, often because of cosmic rays or other
sources of radiation.
With the instruction retry function, when an error is encountered in the core, in caches and
certain logic functions, the POWER7+ processor first automatically retries the instruction. If
the source of the error was truly transient, the instruction succeeds and the system can
continue as before.
Alternate processor retry
Hard failures are more difficult; they are permanent errors that are replicated each time that
the instruction is repeated. Retrying the instruction does not help in this situation because the
instruction will continue to fail.
As introduced with POWER6, POWER7+ processors can extract the failing instruction from
the faulty core and retry it elsewhere in the system. The failing core is then dynamically
deconfigured and scheduled for replacement.
Dynamic processor deallocation
Dynamic processor deallocation enables automatic deconfiguration of processor cores when
patterns of recoverable core-related faults are detected. Dynamic processor deallocation
prevents a recoverable error from escalating to an unrecoverable system error, which might
otherwise result in an unscheduled server outage. Dynamic processor deallocation relies on
the service processor’s ability to use FFDC-generated recoverable error information to notify
the POWER Hypervisor when a processor core reaches its predefined error limit. The
POWER Hypervisor then dynamically deconfigures the failing core and notifies the system
administrator that a replacement is needed. The entire process is transparent to the partition
owning the failing instruction.
Single processor checkstop
As in the POWER6 processor, the POWER7+ processor provides single core check-stopping
for certain processor logic, command, or control errors that cannot be handled by the
availability enhancements in the preceding section.
This approach significantly reduces the probability of any one processor affecting total system
availability by containing most processor checkstops to the partition that was using the
processor at the time that full checkstop goes into effect.
Even with all these availability enhancements to prevent processor errors from affecting
system-wide availability, errors might occur that can result in a system-wide outage.
Before POWER6: On IBM systems prior to POWER6, such an error typically caused a
checkstop

144
IBM Power 710 and 730 Technical Overview and Introduction
4.2.3 Memory protection
A memory protection architecture that provides good error resilience for a relatively small L1
cache might be inadequate for protecting the much larger system main store. Therefore, a
variety of protection methods are used in all POWER processor-based systems to avoid
uncorrectable errors in memory.
Memory protection plans must account for many factors, including the following factors:
Size
Desired performance
Memory array manufacturing characteristics
POWER7+ processor-based systems have various protection schemes designed to prevent,
protect, or limit the effect of errors in main memory:
Chipkill
Chipkill is an enhancement that enables a system to sustain the failure of an entire
DRAM chip. An ECC word uses 18 DRAM chips from two DIMM pairs, and a failure on any
of the DRAM chips can be fully recovered by the ECC algorithm. The system can continue
indefinitely in this state with no performance degradation until the failed DIMM can
be replaced.
72-byte ECC
In POWER7+, an ECC word consists of 72 bytes of data. Of these, 64 bytes are used to
hold application data. The remaining eight bytes are used to hold check bits and additional
information about the ECC word.
This innovative ECC algorithm from IBM research works on DIMM pairs on a rank basis.
(A
rank
is a group of nine DRAM chips.) With this ECC code, the system can dynamically
recover from an entire DRAM failure (by Chipkill) but can also correct an error even if
another
symbol
(a byte, accessed by a 2-bit line pair) experiences a fault (an improvement
from the double error detection or single error correction ECC implementation found on
the POWER6 processor-based systems).
Hardware scrubbing
Hardware scrubbing is a method used to handle intermittent errors. IBM POWER
processor-based systems periodically address all memory locations. Any memory
locations with a correctable error are rewritten with the correct data.
Cyclic redundancy check (CRC)
The bus that is transferring data between the processor and the memory uses CRC error
detection with a failed operation-retry mechanism and the ability to dynamically retune the
bus parameters when a fault occurs. In addition, the memory bus has spare capacity to
substitute a data bit-line whenever it is determined to be faulty.
POWER7+ memory subsystem
The POWER7+ processor chip contains two memory controllers with four channels per
memory controller. Each channel connects to a single DIMM, but as the channels work in
pairs, a processor chip can address four DIMM pairs, two pairs per memory controller.
The bus transferring data between the processor and the memory uses CRC error detection
with a failed operation retry mechanism and the ability to dynamically retune bus parameters
when a fault occurs. In addition, the memory bus has spare capacity to substitute a spare
data bit-line for one that is determined to be faulty.

Chapter 4. Continuous availability and manageability
145
Advanced memory buffer chips are exclusive to IBM and help to increase performance, acting
as read/write buffers. The Power 710 and the Power 730 use one memory controller.
Advanced memory buffer chips are on the memory cards and support two DIMMs each.
Memory page deallocation
Although coincident cell errors in separate memory chips are statistically rare, IBM
POWER7+ processor-based systems can contain these errors by using a memory page
deallocation scheme for partitions that are running IBM AIX and IBM i operating systems, and
also for memory pages that are owned by the POWER Hypervisor. If a memory address
experiences an uncorrectable or repeated correctable single cell error, the service processor
sends the memory page address to the POWER Hypervisor to be marked for deallocation.
Pages that are used by the POWER Hypervisor are deallocated as soon as the page is
released. In other cases, the POWER Hypervisor notifies the owning partition that the page
must be deallocated. Where possible, the operating system moves any data currently
contained in that memory area to another memory area and removes the pages associated
with this error from its memory map, no longer addressing these pages. The operating system
performs memory page deallocation without any user intervention and is transparent to users
and applications.
The POWER Hypervisor maintains a list of pages marked for deallocation during the current
platform initial program load (IPL). During a partition IPL, the partition receives a list of all the
bad pages in its address space. In addition, if memory is dynamically added to a partition
(through a dynamic LPAR operation), the POWER Hypervisor warns the operating system
when memory pages are included that need to be deallocated.
Finally, if an uncorrectable error in memory is discovered, the logical memory block that is
associated with the address that has the uncorrectable error is marked for deallocation by the
POWER Hypervisor. This deallocation becomes effective on a partition reboot if the logical
memory block is assigned to an active partition at the time of the fault.
In addition, the system will deallocate the entire memory group that is associated with the
error on all subsequent system reboots until the memory is repaired. This precaution is
intended to guard against future uncorrectable errors while waiting for parts replacement.
Memory persistent deallocation
Defective memory that is discovered at boot time is automatically switched off. If the service
processor detects a memory fault at boot time, it marks the affected memory as bad so that it
is not used on subsequent reboots.
If the service processor identifies faulty memory in a server that includes CoD memory, the
POWER Hypervisor attempts to replace the faulty memory with available CoD memory. Faulty
resources are marked as deallocated, and working resources are included in the active
memory space. Because these activities reduce the amount of CoD memory that is available
for future use, repair of the faulty memory must be scheduled as soon as convenient.
Upon reboot, if not enough memory is available to meet minimum partition requirements, the
POWER Hypervisor will reduce the capacity of one or more partitions.
Depending on the configuration of the system, the HMC IBM Service Focal Point™, OS
Service Focal Point, or service processor will receive a notification of the failed component,
and will trigger a service call.

146
IBM Power 710 and 730 Technical Overview and Introduction
4.2.4 Cache protection
POWER7+ processor-based systems are designed with cache protection mechanisms,
including cache-line delete in both L2 and L3 arrays, processor instruction retry and alternate
processor recovery protection on L1-I and L1-D, and redundant “repair” bits in L1-I, L1-D, and
L2 caches, and L2 and L3 directories.
L1 instruction and data array protection
The POWER7+ processor instruction and data caches are protected against intermittent
errors using processor instruction retry and against permanent errors by alternate processor
recovery, both mentioned previously. L1 cache is divided into sets. POWER7+ processor can
deallocate all but one before doing a processor instruction retry.
In addition, faults in the Segment Lookaside Buffer (SLB) array are recoverable by the
POWER Hypervisor. The SLB is used in the core to do address translation calculations.
L2 and L3 array protection
The L2 and L3 caches in the POWER7+ processor are protected with double-bit detect
single-bit correct error detection code (ECC). Single-bit errors are corrected before forwarding
to the processor and are subsequently written back to the L2 and L3 cache.
In addition, the caches maintain a cache-line delete capability. A threshold of correctable
errors that are detected on a cache line can result in the data in the cache line being purged
and the cache line removed from further operation without requiring a reboot. An ECC
uncorrectable error detected in the cache can also trigger a purge and delete of the cache
line. This results in no loss of operation because an unmodified copy of the data can be held
on system memory to reload the cache line from main memory. Modified data is handled
through Special Uncorrectable Error handling.
L2 and L3 deleted cache lines are marked for persistent deconfiguration on subsequent
system reboots until they can be replaced.
4.2.5 Special Uncorrectable Error handling
Although rare, an uncorrectable data error can occur in memory or cache. IBM POWER
processor-based systems attempt to limit the impact of an uncorrectable error to the least
possible disruption, using a well-defined strategy that first considers the data source.
Sometimes, an uncorrectable error is temporary in nature and occurs in data that can be
recovered from another repository, as in the following example:
Data in the instruction L1 cache is never modified within the cache itself. Therefore, an
uncorrectable error discovered in the cache is treated like an ordinary cache miss, and
correct data is loaded from the L2 cache.
The L2 and L3 cache of the POWER7+ processor-based systems can hold an unmodified
copy of data in a portion of main memory. In this case, an uncorrectable error simply
triggers a reload of a cache line from main memory.

Chapter 4. Continuous availability and manageability
147
In cases where the data cannot be recovered from another source, a technique named
Special Uncorrectable Error (SUE) handling is used to prevent an uncorrectable error in
memory or cache from immediately causing the system to terminate. That is, the system tags
the data and determines whether it will ever be used again:
If the error is irrelevant, SUE will not force a checkstop.
If data is used, termination can be limited to the program/kernel or hypervisor that owns
the data, or freeze the I/O adapters that are controlled by an I/O hub controller if data is
going to be transferred to an I/O device.
When an uncorrectable error is detected, the system modifies the associated ECC word,
thereby signaling to the rest of the system that the “standard” ECC is no longer valid. The
service processor is then notified and takes appropriate actions. When running AIX 5.2, or
later, or Linux, and a process attempts to use the data, the operating system is informed of
the error and might terminate, or only terminate a specific process that is associated with the
corrupt data, depending on the operating system and firmware level and whether the data
was associated with a kernel or non-kernel process.
Only in the case where the corrupt data is used by the POWER Hypervisor must the entire
system be rebooted, thereby preserving overall system integrity.
Depending on system configuration and the source of the data, errors encountered during I/O
operations might not result in a machine check. Instead, the incorrect data is handled by the
processor host bridge (PHB) chip. When the PHB chip detects a problem, it rejects the data,
preventing data from being written to the I/O device.
The PHB then enters a freeze mode, halting normal operations. Depending on the model and
type of I/O being used, the freeze might include the entire PHB chip, or simply a single bridge,
resulting in the loss of all I/O operations that use the frozen hardware until a power-on reset of
the PHB is done. The impact to partitions depends on how the I/O is configured for
redundancy. In a server configured for failover availability, redundant adapters spanning
multiple PHB chips can enable the system to recover transparently, without partition loss.
4.2.6 PCI Enhanced Error Handling
IBM estimates that PCI adapters can account for a significant portion of the hardware-based
errors on a large server. Although servers that rely on boot-time diagnostics can identify
failing components to be replaced by hot-swap and reconfiguration, runtime errors pose a
more significant problem.
PCI adapters are generally complex designs involving extensive on-board instruction
processing, often on embedded microcontrollers. They tend to use industry standard grade
components with an emphasis on product cost relative to high reliability. In certain cases, they
might be more likely to encounter internal microcode errors or many of the hardware errors
described for the rest of the server.
The traditional means of handling these problems is through adapter internal error reporting
and recovery techniques in combination with operating system device driver management
and diagnostics. In certain cases, an error in the adapter might cause transmission of bad
data on the PCI bus itself, resulting in a hardware-detected parity error and causing a global
machine-check interrupt, eventually requiring a system reboot to continue.
PCI Enhanced Error Handling (EEH) enabled adapters respond to a special data packet that
is generated from the affected PCI slot hardware by calling system firmware, which will
examine the affected bus, allow the device driver to reset it, and continue without a system

148
IBM Power 710 and 730 Technical Overview and Introduction
reboot. For Linux, EEH support extends to the majority of frequently used devices, although
various third-party PCI devices might not provide native EEH support.
To detect and correct PCIe bus errors, POWER7+ processor-based systems use CRC
detection and instruction-retry correction; for PCI-X, the systems use ECC.
Figure 4-2 shows the location and various mechanisms that are used throughout the I/O
subsystem for PCI Enhanced Error Handling.
Figure 4-2 PCI Enhanced Error Handling
4.3 Serviceability
IBM Power Systems design considers both IBM and the client’s needs. The IBM Serviceability
Team, enhanced the base service capabilities and continues to implement a strategy that
incorporates best-of-its-kind service characteristics from diverse IBM Systems offerings.
The purpose of serviceability is to repair the system while attempting to minimize or eliminate
service cost (within budget objectives), while maintaining high customer satisfaction.
Serviceability includes system installation, MES (system upgrades/downgrades), and system
maintenance/repair. Depending on the system and warranty contract, service may be
performed by the customer, an IBM representative, or an authorized warranty service
provider.
PCIe
Adapter
PCI-X
Adapter
Parity error
Parity error
I/O drawer concurrent add
CRC with
retry or ECC
PCI Bridge Enhanced
Error Handling
PCI-X to PCI-X
POWER7+
12X Channel
Hub
PCI-X
Bridge
PCI-X
Bridge
POWER7+
12X Channel
Hub
12X Channel –
PCIe Bridge
GX+ / GX++ bus
adapter
12x channel failover
support
PCI Bus Enhanced Error
Handling

Chapter 4. Continuous availability and manageability
149
The serviceability features that are delivered in this system provide a highly efficient service
environment by incorporating the following attributes:
Design for customer setup (CSU), customer installed features (CIF), and
customer-replaceable units (CRU)
Error detection and fault isolation (ED/FI)
First-failure data capture (FFDC)
Converged service approach across multiple IBM server platforms
By delivering on these goals, IBM Power Systems servers enable faster and more accurate
repair, and reduce the possibility of human error.
Client control of the service environment extends to firmware maintenance on all of the
POWER processor-based systems. This strategy contributes to higher systems availability
with reduced maintenance costs.
This section provides an overview of the progressive steps of error detection, analysis,
reporting, notifying, and repairing found in all POWER processor-based systems.
4.3.1 Detecting
The first and most crucial component of a solid serviceability strategy is the ability to
accurately and effectively detect errors when they occur. Although not all errors are a
guaranteed threat to system availability, those that go undetected can cause problems
because the system has no opportunity to evaluate and act if necessary. Power
processor-based systems employ IBM System z® server-inspired error detection
mechanisms, extending from processor cores and memory to power supplies and hard
drives.
Service processor
The service processor is a microprocessor that is powered separately from the main
instruction processing complex. The service processor provides the capabilities for the
following items:
POWER Hypervisor (system firmware) and Hardware Management Console connection
surveillance
Several remote power control options
Reset and boot features
Environmental monitoring
The service processor monitors the server’s built-in temperature sensors, sending
instructions to the system fans to increase rotational speed when the ambient temperature is
above the normal operating range. By using an architected operating system interface, the
service processor notifies the operating system of potential environmentally related problems
so that the system administrator can take appropriate corrective actions before a critical
failure threshold is reached. The service processor can also post a warning and initiate an
orderly system shutdown in the following circumstances:
The operating temperature exceeds the critical level (for example, failure of air
conditioning or air circulation around the system).
The system fan speed is out of operational specification (for example, because of multiple
fan failures).
The server input voltages are out of operational specification.

150
IBM Power 710 and 730 Technical Overview and Introduction
The service processor can immediately shut down a system in the following circumstances:
Temperature exceeds the critical level or remains above the warning level for too long.
Internal component temperatures reach critical levels.
Non-redundant fan failures occur.
The service processor provides the following features:
Placing calls
On systems without a Hardware Management Console, the service processor can place
calls to report surveillance failures with the POWER Hypervisor, critical environmental
faults, and critical processing faults even when the main processing unit is inoperable.
Mutual surveillance
The service processor monitors the operation of the firmware during the boot process, and
also monitors the hypervisor for termination. The hypervisor monitors the service
processor and can perform a reset and reload if it detects the loss of the service
processor. If the reset/reload operation does not correct the problem with the service
processor, the hypervisor notifies the operating system; the operating system can then
take appropriate action, including calling for service.
Availability
The POWER7+ family of systems continues to offer and introduce significant
enhancements designed to increase system availability.
As in POWER6, POWER6+, and POWER7, the POWER7+ processor has the ability to do
processor instruction retry and alternate processor recovery for several core-related faults.
This ability significantly reduces exposure to both hard (logic) and soft (transient) errors in
the processor core. Soft failures in the processor core are transient (intermittent) errors,
often because of cosmic rays or other sources of radiation, and generally are not
repeatable. When an error is encountered in the core, the POWER7+ processor first
automatically retries the instruction. If the source of the error was truly transient, the
instruction succeeds and the system continues as before. On IBM systems before
POWER6, this error caused a checkstop.
Hard failures are more difficult; they are true logical errors that are replicated each time the
instruction is repeated. Retrying the instruction does not help in this situation. As in
POWER6, POWER6+, and POWER7, all POWER7+ processors can extract the failing
instruction from the faulty core and retry it elsewhere in the system for several faults, after
which the failing core is dynamically deconfigured and called out for replacement. These
systems are designed to avoid a full system outage.
Uncorrectable error recovery
The auto-restart (reboot) option, when enabled, can reboot the system automatically
following an unrecoverable firmware error, firmware hang, hardware failure, or
environmentally induced (AC power) failure.
The auto-restart (reboot) option must be enabled from the Advanced System
Management Interface (ASMI) or from the Control (Operator) Panel.

Chapter 4. Continuous availability and manageability
151
Figure 4-3 shows this option using the ASMI.
Figure 4-3 ASMI Auto Power Restart setting panel
Partition availability priority
Availability priorities can be assigned to partitions. If an alternate processor recovery event
requires spare processor resources to protect a workload, when no other means of
obtaining the spare resources is available, the system determines which partition has the
lowest priority and attempts to claim the needed resource. On a properly configured
POWER7+ processor-based server, this way allows that capacity to be first obtained from,
for example, a test partition instead of a financial accounting system.
POWER7+ cache availability
The L2 and L3 caches in the POWER7+ processor are protected with double-bit detect,
single-bit correct error detection code (ECC). In addition, the caches maintain a cache line
delete capability. A threshold of correctable errors detected on a cache line can result in
the data in the cache line being purged and the cache line removed from further operation
without requiring a reboot. An ECC uncorrectable error detected in the cache can also
trigger a purge and delete operation of the cache line. This step results in no loss of
operation if the cache line contained data that is unmodified from what was stored in
system memory. Modified data would be handled through Special Uncorrectable Error
handling. L1 data and instruction caches also have a retry capability for intermittent error
and a cache set delete mechanism for handling solid failures. In addition, the POWER7+
processors also have the ability to dynamically substitute a faulty bit-line in an L3 cache
dedicated to a processor with a spare bit-line.
Fault monitoring
Built-in self-test (BIST) checks processor, cache, memory, and associated hardware that
is required for proper booting of the operating system, when the system is powered on at
the initial installation or after a hardware configuration change (for example, an upgrade).
If a non-critical error is detected or if the error occurs in a resource that can be removed
from the system configuration, the booting process is designed to proceed to completion.
The errors are logged in the system nonvolatile random access memory (NVRAM). When
the operating system completes booting, the information is passed from the NVRAM to the

152
IBM Power 710 and 730 Technical Overview and Introduction
system error log where it is analyzed by error log analysis (ELA) routines. Appropriate
actions are taken to report the boot-time error for subsequent service, if required.
Concurrent access to the service processors menus of the ASMI
This access allows nondisruptive abilities to change system default parameters,
interrogate service processor progress and error logs, and set and reset server indicators
(Guiding Light for midrange and high-end servers, Light Path for low-end servers),
accessing all service processor functions without having to power down the system to the
standby state. This allows the administrator or service representative to dynamically
access the menus from any web browser-enabled console that is attached to the Ethernet
service network, concurrently with normal system operation.
Managing the interfaces for connecting uninterruptible power source systems to the
POWER processor-based systems, performing timed power-on (TPO) sequences, and
interfacing with the power and cooling subsystem
Error checkers
IBM POWER processor-based systems contain specialized hardware detection circuitry that
is used to detect erroneous hardware operations. Error checking hardware ranges from parity
error detection coupled with processor instruction retry and bus retry, to ECC correction on
caches and system buses.
All IBM hardware error checkers have distinct attributes:
Continuous monitoring of system operations to detect potential calculation errors.
Attempts to isolate physical faults based on runtime detection of each unique failure.
Ability to initiate a wide variety of recovery mechanisms designed to correct the problem.
The POWER processor-based systems include extensive hardware and firmware
recovery logic.
Fault isolation registers
Error-checker signals are captured and stored in hardware fault isolation registers (FIRs).
The associated logic circuitry is used to limit the domain of an error to the first checker that
encounters the error. In this way, runtime error diagnostics can be deterministic so that for
every check station, the unique error domain for that checker is defined and documented.
Ultimately, the error domain becomes the field-replaceable unit (FRU) call, and manual
interpretation of the data is not normally required.
First-failure data capture
First-failure data capture (FFDC) is an error isolation technique. It ensures that when a fault is
detected in a system through error checkers or other types of detection methods, the root
cause of the fault will be captured without the need to re-create the problem or run an
extended tracing or diagnostics program.
For the vast majority of faults, a good FFDC design means that the root cause is detected
automatically without intervention by a service representative. Pertinent error data related to
the fault is captured and saved for analysis. In hardware, FFDC data is collected from the fault
isolation registers and from the associated logic. In firmware, this data consists of return
codes, function calls, and so forth.
FFDC
check stations
are carefully positioned within server logic and data paths to ensure that
potential errors can be quickly identified and accurately tracked to a FRU.
This proactive diagnostic strategy is a significant improvement over the classic, less accurate
reboot and diagnose
service approaches.

Chapter 4. Continuous availability and manageability
153
Figure 4-4 shows a schematic of a fault isolation register implementation.
Figure 4-4 Schematic of FIR implementation
Fault isolation
The service processor interprets error data that is captured by the FFDC checkers (saved in
the FIRs or other firmware-related data capture methods) to determine the root cause of the
error event.
Root cause analysis might indicate that the event is recoverable, meaning that a service
action point or need for repair has not been reached. Alternatively, it might indicate that a
service action point was reached, where the event exceeded a predetermined threshold or
was unrecoverable. Based on the isolation analysis, recoverable error-threshold counts can
be incremented. No specific service action is necessary when the event is recoverable.
When the event requires a service action, additional required information is collected to
service the fault. For unrecoverable errors or for recoverable events that meet or exceed their
service threshold (meaning that a service action point was reached) a request for service is
initiated through an error logging component.
Memory
CPU
L2 / L3
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
L1
Disk
Text
Text
Text
Text
Text
Text
Text
Text
Non-volatile
RAM
Service
Processor
Error checkers
Text
Fault isolation register (FIR)
Unique fingerprint of each
captured error
Log error

154
IBM Power 710 and 730 Technical Overview and Introduction
4.3.2 Diagnosing
General diagnostic objectives are to detect and identify problems so that they can be resolved
quickly. IBM diagnostics strategy includes the following elements:
Provide a common error code format equivalent to a system reference code, system
reference number, checkpoint, or firmware error code.
Provide fault detection and problem isolation procedures. Support remote connection
ability to be used by the IBM Remote Support Center or IBM Designated Service.
Provide interactive intelligence within the diagnostics with detailed online failure
information while connected to IBM back-end system.
Using the extensive network of advanced and complementary error detection logic that is built
directly into hardware, firmware, and operating systems, the IBM Power Systems servers can
perform considerable self-diagnosis.
Because of the FFDC technology that is designed into IBM servers, re-creating diagnostics
for failures or requiring user intervention is not necessary. Solid and intermittent errors are
designed to be correctly detected and isolated at the time that the failure occurs. Runtime and
boottime diagnostics fall into this category.
Boot time
When an IBM Power Systems server powers up, the service processor initializes the system
hardware. Boot-time diagnostic testing uses a multitier approach for system validation,
starting with managed low-level diagnostics that are supplemented with system firmware
initialization and configuration of I/O hardware, followed by OS-initiated software test routines.
Boot-time diagnostic routines include the following items:
Built-in self-tests (BISTs) for both logic components and arrays ensure the internal
integrity of components. Because the service processor assists in performing these tests,
the system is enabled to perform fault determination and isolation, whether or not the
system processors are operational. Boot-time BISTs can also find faults undetectable by
processor-based power-on self-test (POST) or diagnostics.
Wire-tests discover and precisely identify connection faults between components such as
processors, memory, or I/O hub chips.
Initialization of components such as ECC memory, typically by writing patterns of data and
allowing the server to store valid ECC data for each location, can help isolate errors.
To minimize boot time, the system determines which of the diagnostics are required to be
started to ensure correct operation, based on the way that the system was powered off, or on
the boot-time selection menu.
Run time
All Power Systems servers can monitor critical system components during run time, and they
can take corrective actions when recoverable faults occur. IBM hardware error-check
architecture provides the ability to report non-critical errors in an
out-of-band
communications
path to the service processor without affecting system performance.
A significant part of IBM runtime diagnostic capabilities originate with the service processor.
Extensive diagnostic and fault analysis routines were developed and improved over many
generations of POWER processor-based servers, and enable quick and accurate predefined
responses to both actual and potential system problems.
The service processor correlates and processes runtime error information by using logic
derived from IBM engineering expertise to count recoverable errors (called thresholding) and

Chapter 4. Continuous availability and manageability
155
predict when corrective actions must be automatically initiated by the system. These actions
can include the following items:
Requests for a part to be replaced
Dynamic invocation of built-in redundancy for automatic replacement of a failing part
Dynamic deallocation of failing components so that system availability is maintained
Device drivers
In certain cases, diagnostics are best performed by operating system-specific drivers, most
notably I/O devices that are owned directly by a logical partition. In these cases, the operating
system device driver often works in conjunction with I/O device microcode to isolate and
recover from problems. Potential problems are reported to an operating system device driver,
which logs the error. I/O devices can also include specific exercisers that can be invoked by
the diagnostic facilities for problem recreation if required by service procedures.
4.3.3 Reporting
In the unlikely event that a system hardware or environmentally induced failure is diagnosed,
IBM Power Systems servers report the error through various mechanisms. The analysis
result is stored in system NVRAM. Error log analysis (ELA) can be used to display the failure
cause and the physical location of the failing hardware.
With the integrated service processor, the system can automatically send an alert through a
phone line to a pager, or call for service in the event of a critical system failure. A hardware
fault also illuminates the amber system fault LED, located on the system unit, to alert the user
of an internal hardware problem.
On POWER7+ processor-based servers, hardware and software failures are recorded in the
system log. When a management console is attached, an ELA routine analyzes the error,
forwards the event to the Service Focal Point (SFP) application running on the management
console, and has the capability to notify the system administrator that it has isolated a likely
cause of the system problem. The service processor event log also records unrecoverable
checkstop conditions, forwards them to the SFP application, and notifies the system
administrator. After the information is logged in the SFP application, if the system is properly
configured, a call-home service request is initiated and the pertinent failure data with service
parts information and part locations is sent to the IBM service organization.This information
will also contain the client contact information as defined in the IBM Electronic Service Agent
(ESA) guided setup wizard.
Error logging and analysis
When the root cause of an error is identified by a fault isolation component, an error log entry
is created with basic data such as the following examples:
An error code that uniquely describes the error event
The location of the failing component
The part number of the component to be replaced, including pertinent data such as
engineering and manufacturing levels
Return codes
Resource identifiers
FFDC data
Data that contains information about the effect that the repair will have on the system is also
included. Error log routines in the operating system and FSP can then use this information

156
IBM Power 710 and 730 Technical Overview and Introduction
and decide whether the fault is a call-home candidate. If the fault requires support
intervention, a call is placed with service and support, and a notification is sent to the contact
that is defined in the ESA-guided setup wizard.
Remote support
The Remote Management and Control (RMC) subsystem is delivered as part of the base
operating system, including the operating system that runs on the Hardware Management
Console. RMC provides a secure transport mechanism across the LAN interface between the
operating system and the Hardware Management Console and is used by the operating
system diagnostic application for transmitting error information. It performs several other
functions also, but these are not used for the service infrastructure.
Service Focal Point (SFP)
A critical requirement in a logically partitioned environment is to ensure that errors are not lost
before being reported for service, and that an error should be reported only once, regardless
of how many logical partitions experience the potential effect of the error. The Manage
Serviceable Events task on the management console is responsible for aggregating duplicate
error reports, and ensures that all errors are recorded for review and management.
When a local or globally reported service request is made to the operating system, the
operating system diagnostic subsystem uses the Remote Management and Control
subsystem to relay error information to the Hardware Management Console. For global
events (platform unrecoverable errors, for example), the service processor also forwards error
notification of these events to the Hardware Management Console, providing a redundant
error-reporting path in case of errors in the Remote Management and Control subsystem
network.
The first occurrence of each failure type is recorded in the Manage Serviceable Events task
on the management console. This task then filters and maintains a history of duplicate
reports from other logical partitions on the service processor. It then looks at all active service
event requests, analyzes the failure to ascertain the root cause and, if enabled, initiates a call
home for service. This methodology ensures that all platform errors will be reported through
at least one functional path, ultimately resulting in a single notification for a single problem.
Extended error data
Extended error data (EED) is additional data that is collected either automatically at the time
of a failure or manually at a later time. The data that is collected depends on the invocation
method but includes information such as firmware levels, operating system levels, additional
fault isolation register values, recoverable error threshold register values, system status, and
any other pertinent data.
The data is formatted and prepared for transmission back to IBM either to assist the service
support organization with preparing a service action plan for the service representative or for
additional analysis.
System-dump handling
In certain circumstances, an error might require a dump to be automatically or manually
created. In this event, it is off-loaded to the management console. Specific management
console information is included as part of the information that can optionally be sent to IBM
support for analysis. If additional information that relates to the dump is required, or if viewing
the dump remotely becomes necessary, the management console dump record notifies the
IBM support center regarding on which management console the dump is located.

Chapter 4. Continuous availability and manageability
157
4.3.4 Notifying
After a Power Systems server detects, diagnoses, and reports an error to an appropriate
aggregation point, it then takes steps to notify the client, and if necessary the IBM support
organization. Depending on the assessed severity of the error and support agreement, this
client notification might range from a simple notification to having field service personnel
automatically dispatched to the client site with the correct replacement part.
Client Notify
When an event is important enough to report, but does not indicate the need for a repair
action or the need to call home to IBM service and support, it is classified as
Client Notify.

Clients are notified because these events might be of interest to an administrator. The event
might be a symptom of an expected systemic change, such as a network reconfiguration or
failover testing of redundant power or cooling systems. These events include the following
examples:
Network events such as the loss of contact over a local area network (LAN)
Environmental events such as ambient temperature warnings
Events that need further examination by the client (although these events do not
necessarily require a part replacement or repair action)
Client Notify events are serviceable events, by definition, because they indicate that
something happened that requires client awareness if the client wants to take further action.
These events can always be reported back to IBM at the discretion of the client.
Call home
Call home
refers to an automatic or manual call from a customer location to an IBM support
structure with error log data, server status, or other service-related information. The call home
feature invokes the service organization so that the appropriate service action can begin. Call
home can be done through HMC or most non-HMC managed systems. Although configuring
a call home function is optional, clients are encouraged to implement this feature to obtain
service enhancements such as reduced problem determination and faster and potentially
more accurate transmittal of error information. In general, using the call home feature can
result in increased system availability. The Electronic Service Agent application can be
configured for automated call home. See 4.4.4, “Electronic Services and Electronic Service
Agent” on page 169 for specific details.
Vital product data and inventory management
Power Systems store vital product data (VPD) internally, which keeps a record of how much
memory is installed, how many processors are installed, the manufacturing level of the parts,
and so on. These records provide valuable information that can be used by remote support
and service representatives, enabling the representatives to provide assistance in keeping
the firmware and software current on the server.
IBM problem management database
At the IBM support center, historical problem data is entered into the IBM Service and
Support Problem Management database. All of the information that is related to the error,
along with any service actions taken by the service representative, is recorded for problem
management by the support and development organizations. The problem is then tracked
and monitored until the system fault is repaired.

158
IBM Power 710 and 730 Technical Overview and Introduction
4.3.5 Locating and servicing
The final component of a comprehensive design for serviceability is the ability to effectively
locate and replace parts requiring service. POWER processor-based systems use a
combination of visual cues and guided maintenance procedures to ensure that the identified
part is replaced correctly, every time.
Packaging for service
The following service enhancements are included in the physical packaging of the systems to
facilitate service:
Color coding (touch points)
– Terra-cotta-colored touch points indicate that a component (FRU or CRU) can be
concurrently maintained.
– Blue-colored touch points delineate components that are not concurrently maintained
(those that require the system to be turned off for removal or repair).
Tool-less design
Selected IBM systems support tool-less or simple tool designs. These designs require no
tools, or require basic tools such as flathead screw drivers, to service the hardware
components.
Positive retention
Positive retention mechanisms help to ensure proper connections between hardware
components, such as from cables to connectors, and between two cards that attach to
each other. Without positive retention, hardware components risk becoming loose during
shipping or installation, preventing a good electrical connection. Positive retention
mechanisms such as latches, levers, thumb-screws, pop Nylatches (U-clips), and cables
are included to help prevent loose connections and aid in installing (seating) parts
correctly. These positive retention items do not require tools.
Light Path
The Light Path LED feature is for low-end systems, including Power Systems through models
710 and 730, that can be repaired by clients. In the Light Path LED implementation, when a
fault condition is detected on the POWER7 or POWER7+ processor-based system, an amber
FRU fault LED is illuminated, which is then rolled up to the system fault LED. The Light Path
system pinpoints the exact part by lighting the amber FRU fault LED that is associated with
the part to be replaced.
The system can clearly identify components for replacement by using specific component
level LEDs, and can also guide the servicer directly to the component by signaling (remaining
on, or
solid
) the system fault LED, enclosure fault LED, and the component FRU fault LED.
After the repair, the LEDs shut off automatically when the problem is fixed.
Guiding Light
Midrange and high-end systems, including model 760 and later, are usually repaired by IBM
Support personnel.
In the Light Path LED implementation, the system can clearly identify components for
replacement by using specific component-level LEDs, and can also guide the servicer directly
to the component by signaling (turning on solid) the amber system fault LED, enclosure fault
LED, and the component FRU fault LED. The servicer can also use the identify function to
blink the FRU-level LED. When this function is activated, a roll-up to the blue enclosure locate

Chapter 4. Continuous availability and manageability
159
and system locate LEDs will occur. These LEDs will turn on solid and can be used to follow
the light path from the system to the enclosure and down to the specific FRU.
Data centers can be complex places, and Guiding Light is designed to do more than identify
visible components. When a component might be hidden from view, Guiding Light can flash a
sequence of LEDs that extends to the frame exterior, clearly
guiding
the service
representative to the correct rack, system, enclosure, drawer, and component.
Service labels
Service providers use these labels to assist in doing maintenance actions. Service labels are
in various formats and positions, and are intended to transmit readily available information to
the servicer during the repair process.
Several of these service labels and their purposes are described in the following list:
Location diagrams are strategically positioned on the system hardware, relating
information regarding the placement of hardware components. Location diagrams can
include location codes, drawings of physical locations, concurrent maintenance status, or
other data that is pertinent to a repair. Location diagrams are especially useful when
multiple components are installed, such as DIMMs, sockets, processor cards, fans,
adapter cards, LEDs, and power supplies.
Remove or replace procedure labels contain procedures often found on a cover of the
system or in other locations that are accessible to the servicer. These labels provide
systematic procedures, including diagrams, detailing how to remove and replace certain
serviceable hardware components.
Numbered arrows are used to indicate the order of operation and serviceability direction of
components. Various serviceable parts such as latches, levers, and touch points must be
pulled or pushed in a certain direction and order so that the mechanical mechanisms can
engage or disengage. Arrows generally improve the ease of serviceability.
The operator panel
The operator panel on a POWER processor-based system is an LCD display (four rows by
sixteen elements) that is used to present boot progress codes, indicating advancement
through the system power-on and initialization processes. The operator panel is also used to
display error and location codes when an error occurs that prevents the system from booting.
It includes several buttons, enabling a service support representative (SSR) or client to
change various boot-time options and for other limited service functions.
Concurrent maintenance
The IBM POWER7 and POWER7+ processor-based systems are designed with the
understanding that certain components have higher intrinsic failure rates than others. The
movement of fans, power supplies, and physical storage devices naturally make them more
susceptible to wearing down or burning out. Other devices, such as I/O adapters can begin
to wear from repeated plugging and unplugging. For these reasons, these devices are
specifically designed to be concurrently maintainable when properly configured.
In other cases, a client might be in the process of moving or redesigning a data center or
planning a major upgrade. At those times, flexibility is crucial. The IBM POWER7 and
POWER7+ processor-based systems are designed for redundant or concurrently
maintainable power, fans, physical storage, and I/O towers.
The most recent members of the IBM Power Systems family, based on the POWER7+
processor, continue to support concurrent maintenance of power, cooling, PCI adapters,
media devices, I/O drawers, GX adapter, and the operator panel. In addition, they support

160
IBM Power 710 and 730 Technical Overview and Introduction
concurrent firmware fix pack updates when possible. The determination of whether a
firmware fix pack release can be updated concurrently is identified in the readme file that
is released with the firmware.
Blind swap cassette
Blind swap PCIe adapters represent significant service and ease-of-use enhancements in I/O
subsystem design while maintaining high PCIe adapter density.
Blind swap allows PCIe adapters to be concurrently replaced or installed without having to put
the I/O drawer or system into a service position. Since first delivered, minor carrier design
adjustments were able to improve an already well-planned service design.
For PCIe adapters on the POWER7+ processor-based servers, blind swap cassettes include
the PCIe slot, to avoid the top to bottom movement for inserting the card on the slot that was
required on previous designs. The adapter is correctly connected by just sliding the cassette
in and actuacting a latch.
Firmware updates
System firmware is delivered as a release level or a service pack. Release levels support the
general availability (GA) of new functions or features, and new machine types or models.
Upgrading to a higher release level is disruptive to customer operations. IBM intends to
introduce no more than two new release levels per year. These release levels will be
supported by service packs. Service packs are intended to contain only firmware fixes and
not to introduce new function. A
service pack
is an update to an existing release level.
If the system is managed by a management console, you use the management console for
firmware updates. By using the management console, you can take advantage of the
Concurrent Firmware Maintenance (CFM) option when concurrent service packs are
available. CFM is the IBM term used to describe the IBM Power Systems firmware updates
that can be partially or wholly concurrent or nondisruptive. With the introduction of CFM, IBM
is significantly increasing a client’s opportunity to stay on a given release level for longer
periods of time. Clients that want maximum stability can defer until there is a compelling
reason to upgrade, such as the following reasons:
A release level is approaching its end-of-service date (that is, it has been available for
about a year, and soon, service will not be supported).
Move a system to a more standardized release level when there are multiple systems in
an environment with similar hardware.
A new release has new functionality that is needed in the environment.
A scheduled maintenance action will cause a platform reboot, which provides an
opportunity to also upgrade to a new firmware release.
The updating and upgrading of system firmware depends on several factors, such as whether
the system is stand-alone or managed by a management console, the current firmware
installed, and what operating systems are running on the system. These scenarios and the
associated installation instructions are comprehensively outlined in the firmware section of
Fix Central:
http://www.ibm.com/support/fixcentral/
You might also want to review the best practice white papers:
http://www14.software.ibm.com/webapp/set2/sas/f/best/home.html

Chapter 4. Continuous availability and manageability
161
Repair and verify system
Repair and verify (R&V) is a system that is used to guide a service provider, step-by-step,
through the process of repairing a system and verifying that the problem was repaired. The
steps are customized in the appropriate sequence for the particular repair for the specific
system being repaired. The following scenarios are covered by repair and verify:
Replacing a defective field-replaceable unit (FRU) or a customer-replaceable unit (CRU)
Reattaching a loose or disconnected component
Correcting a configuration error
Removing or replacing an incompatible FRU
Updating firmware, device drivers, operating systems, middleware components, and IBM
applications after replacing a part
Repair and verify procedures can be used by service representative providers who are
familiar with the task and those who are not. Education-on-demand content is placed in the
procedure at the appropriate locations. Throughout the repair and verify procedure, repair
history is collected and provided to the Service and Support Problem Management Database
for storage with the serviceable event, to ensure that the guided maintenance procedures are
operating correctly.
If a server is managed by a management console, then many of the repair and verify
procedures are done from the management console. If the FRU to be replaced is a PCI
adapter or an internal storage device, the service action is always performed from the
operating system of the partition owning that resource.
Clients can subscribe through the subscription services to obtain the notifications about the
latest updates available for service-related documentation. The latest version of the
documentation is accessible through the Internet.
4.4 Manageability
Several functions and tools help manageability so you can efficiently and effectively manage
your system.
4.4.1 Service user interfaces
The service interface allows support personnel or the client to communicate with the service
support applications in a server by using a console, interface, or terminal. Delivering a clear,
concise view of available service applications, the service interface allows the support team to
manage system resources and service information in an efficient and effective way.
Applications that are available through the service interface are carefully configured and
placed to give service providers access to important service functions.
Various service interfaces are used, depending on the state of the system and its operating
environment. The primary service interfaces are the following items:
Light Path and Guiding Light
See “Light Path” on page 158 and “Guiding Light” on page 158.
Service processor, Advanced System Management Interface (ASMI)
Operator panel
Operating system service menu
Service Focal Point on the Hardware Management Console
Service Focal Point Lite on Integrated Virtualization Manager

162
IBM Power 710 and 730 Technical Overview and Introduction
Service processor
The service processor is a controller that is running its own operating system. It is a
component of the service interface card.
The service processor operating system has specific programs and device drivers for the
service processor hardware. The host interface is a processor support interface that is
connected to the POWER processor. The service processor is always working, regardless of
the main system unit’s state. The system unit can be in the following states:
Standby (power off)
Operating, ready to start partitions
Operating with running logical partitions
The service processor is used to monitor and manage the system hardware resources and
devices. The service processor checks the system for errors, ensuring that the connection to
the management console for manageability purposes and accepting Advanced System
Management Interface (ASMI) Secure Sockets Layer (SSL) network connections. The service
processor provides the ability to view and manage the machine-wide settings by using the
ASMI, and enables complete system and partition management from the management
console.
With two CEC enclosures and more, there are two redundant FSPs, one in each of the first
CECs. While one is active, the second one is in standby mode. In case of a failure, there is
automatic takeover.
The service processor uses two Ethernet ports that run at 100 Mbps speed. Consider the
following information:
Both Ethernet ports are visible only to the service processor and can be used to attach the
server to an HMC or to access the ASMI. The ASMI options can be accessed through an
HTTP server that is integrated into the service processor operating environment.
Both Ethernet ports support only auto-negotiation. Customer-selectable media speed and
duplex settings are not available.
Both Ethernet ports have a default IP address, as follows:
– Service processor eth0 (HMC1 port) is configured as 169.254.2.147.
– Service processor eth1 (HMC2 port) is configured as 169.254.3.147.
The following functions are available through service processor:
Call home
Advanced System Management Interface (ASMI)
Error Information (error code, part number, location codes) menu
View of guarded components
Limited repair procedures
Generate dump
LED Management menu
Remote view of ASMI menus
Firmware update through USB key
Analyze system that does not boot: The service processor enables a system that does
not boot to be analyzed. The error log analysis can be done from either the ASMI or the
management console.

Chapter 4. Continuous availability and manageability
163
Advanced System Management Interface
Advanced System Management Interface (ASMI) is the interface to the service processor that
enables you to manage the operation of the server, such as auto-power restart, and to view
information about the server, such as the error log and vital product data. Various repair
procedures require connection to the ASMI.
The ASMI is accessible through the management console. It is also accessible by using a
web browser on a system that is connected directly to the service processor (in this case,
either a standard Ethernet cable or a crossed cable) or through an Ethernet network. ASMI
can also be accessed from an ASCII terminal, but this is only available while the system is in
the platform powered-off mode.
Use the ASMI to change the service processor IP addresses or to apply certain security
policies and prevent access from undesired IP addresses or ranges.
You might be able to use the service processor’s default settings. In that case, accessing the
ASMI is not necessary. To access ASMI, use one of the following methods:
Use a management console.
If configured to do so, the management console connects directly to the ASMI for a
selected system from this task.
To connect to the Advanced System Management interface from a management console,
use the following steps:
a.Open Systems Management from the navigation pane.
b.From the work panel, select one or more managed systems to work with.
c.From the System Management tasks list, select Operations Advanced System
Management (ASM).
Use a web browser.
At the time of writing, supported web browsers are Microsoft Internet Explorer
(Version 10.0.9200.16439), Mozilla Firefox (Version 17.0.2), and Opera (Version 9.24).
Later versions of these browsers might work but are not officially supported. The
JavaScript language and cookies must be enabled.
The web interface is available during all phases of system operation, including the initial
program load (IPL) and run time. However, several of the menu options in the web
interface are unavailable during IPL or run time to prevent usage or ownership conflicts if
the system resources are in use during that phase. The ASMI provides a Secure Sockets
Layer (SSL) web connection to the service processor. To establish an SSL connection,
open your browser by using the following address:
https://<ip_address_of_service_processor>
Use an ASCII terminal.
The ASMI on an ASCII terminal supports a subset of the functions that are provided by the
web interface and is available only when the system is in the platform powered-off mode.
The ASMI on an ASCII console is not available during several phases of system operation,
such as the IPL and run time.
Note: To make the connection through Internet Explorer, click Tools Internet Options.
Clear the Use TLS 1.0 check box, and click OK.

164
IBM Power 710 and 730 Technical Overview and Introduction
The operator panel
The service processor provides an interface to the operator panel, which is used to display
system status and diagnostic information.
The operator panel can be accessed in two ways:
By using the normal operational front view.
By pulling it out to access the switches and viewing the LCD display.
Figure 4-5 shows that the operator panel on a Power 710 and Power 730 is pulled out
Figure 4-5 Operator panel is pulled out from the chassis
Several of the operator panel features include the following items:
A 2 x 16 character LCD display
Reset, enter, power On/Off, increment, and decrement buttons
Amber System Information/Attention, green Power LED
Blue Enclosure Identify LED on the Power 710 and Power 730
Altitude sensor
USB Port
Speaker/Beeper
The following functions are available through the operator panel:
Error Information
Generate dump
View machine type, model, and serial number
Limited set of repair functions
Operating system service menu
The system diagnostics consist of IBM i service tools, stand-alone diagnostics that are loaded
from the DVD drive, and online diagnostics (available in AIX).
Release Lever
(slide left to release operator panel and pull out from chassis)

Chapter 4. Continuous availability and manageability
165
Online diagnostics, when installed, are a part of the AIX or IBM i operating system on the disk
or server. They can be booted in single-user mode (service mode), run in maintenance mode,
or run concurrently (concurrent mode) with other applications. They have access to the AIX
error log and the AIX configuration data. IBM i has a service tools problem log, IBM i history
log (QHST), and IBM i problem log.
The modes are as follows:
Service mode
This mode requires a service mode boot of the system and enables the checking of
system devices and features. Service mode provides the most complete self-check of the
system resources. All system resources, except the SCSI adapter and the disk drives
used for paging, can be tested.
Concurrent mode
This mode enables the normal system functions to continue while selected resources are
being checked. Because the system is running in normal operation, certain devices might
require additional actions by the user or diagnostic application before testing can be done.
Maintenance mode
This mode enables the checking of most system resources. Maintenance mode provides
the same test coverage as service mode. The difference between the two modes is the
way that they are invoked. Maintenance mode requires that all activity on the operating
system be stopped. The
shutdown -m
command is used to stop all activity on the operating
system and put the operating system into maintenance mode.
The System Management Services (SMS) error log is accessible on the SMS menus. This
error log contains errors that are found by partition firmware when the system or partition is
booting.
The service processor’s error log can be accessed on the ASMI menus.
You can also access the system diagnostics from a Network Installation Management (NIM)
server.
The IBM i operating system and associated machine code provide dedicated service tools
(DST) as part of the IBM i licensed machine code (Licensed Internal Code) and System
Service Tools (SST) as part of the IBM i operating system. DST can be run in dedicated mode
(no operating system loaded). DST tools and diagnostics are a superset of those available
under SST.
The IBM i End Subsystem (ENDSBS *ALL) command can shut down all IBM and customer
applications subsystems except the controlling subsystem QTCL. The Power Down System
(PWRDWNSYS) command can be set to power down the IBM i partition and restart the
partition in DST mode.
You can start SST during normal operations, which keeps all applications running, by using
the IBM i Start Service Tools (STRSST) command (when signed onto IBM i with the
appropriately secured user ID).
With DST and SST, you can look at various logs, run various diagnostics, or take several
kinds of system dumps or other options.
Alternate method: When you order a Power System, a DVD-ROM or DVD-RAM might be
optional. An alternate method for maintaining and servicing the system must be available if
you do not order the DVD-ROM or DVD-RAM.

166
IBM Power 710 and 730 Technical Overview and Introduction
Depending on the operating system, the following service-level functions are what you
typically see when you use the operating system service menus:
Product activity log
Trace Licensed Internal Code
Work with communications trace
Display/Alter/Dump
Licensed Internal Code log
Main storage dump manager
Hardware service manager
Call Home/Customer Notification
Error information menu
LED management menu
Concurrent/Non-concurrent maintenance (within scope of the OS)
Managing firmware levels
– Server
– Adapter
Remote support (access varies by OS)
Service Focal Point on the Hardware Management Console
Service strategies become more complicated in a partitioned environment. The Manage
Serviceable Events task in the management console can help to streamline this process.
Each logical partition reports errors that it detects and forwards the event to the Service Focal
Point (SFP) application that is running on the management console, without determining
whether other logical partitions also detect and report the errors. For example, if one logical
partition reports an error for a shared resource, such as a managed system power supply,
other active logical partitions might report the same error.
By using the
Manage Serviceable Events
task in the management console, you can avoid
long lists of repetitive call-home information by recognizing that these are repeated errors and
consolidating them into one error.
In addition, you can use the Manage Serviceable Events task to initiate service functions on
systems and logical partitions, including the exchanging of parts, configuring connectivity, and
managing dumps.
4.4.2 IBM Power Systems firmware maintenance
The IBM Power Systems Client-Managed Microcode is a methodology that enables you to
manage and install microcode updates on Power Systems and associated I/O adapters.
The system firmware consists of service processor microcode, Open Firmware microcode,
SPCN microcode, and the POWER Hypervisor.
The firmware and microcode can be downloaded and installed either from an HMC, from a
running partition, or from USB port number 1 on the rear of a Power 710 and Power 730, if
that system is not managed by an HMC.
Power Systems has a permanent firmware boot side (A side) and a temporary firmware boot
side (B side). New levels of firmware must be installed first on the temporary side to test the
update’s compatibility with existing applications. When the new level of firmware is approved,
it can be copied to the permanent side.

Chapter 4. Continuous availability and manageability
167
For access to the initial web pages that address this capability, see the Support for IBM
Systems web page:
http://www.ibm.com/systems/support
For Power Systems, select the Power link. Figure 4-6 shows an example.
Figure 4-6 Support for Power servers web page
Although the content under the Popular links section can change, click the Firmware and
HMC updates link to go to the resources for keeping your system’s firmware current.
If there is an HMC to manage the server, the HMC interface can be use to view the levels of
server firmware and power subsystem firmware that are installed and that are available to
download and install.

168
IBM Power 710 and 730 Technical Overview and Introduction
Each IBM Power Systems server has the following levels of server firmware and power
subsystem firmware:
Installed level
This level of server firmware or power subsystem firmware is installed and will be installed
into memory after the managed system is powered off and then powered on. It is installed
on the temporary side of system firmware.
Activated level
This level of server firmware or power subsystem firmware is active and running
in memory.
Accepted level
This level is the backup level of server or power subsystem firmware. You can return to this
level of server or power subsystem firmware if you decide to remove the installed level. It is
installed on the permanent side of system firmware.
IBM provides the Concurrent Firmware Maintenance (CFM) function on selected Power
Systems. This function supports applying nondisruptive system firmware service packs to the
system concurrently (without requiring a reboot operation to activate changes). For systems
that are not managed by an HMC, the installation of system firmware is always disruptive.
The concurrent levels of system firmware can, on occasion, contain fixes that are known as
deferred
. These deferred fixes can be installed concurrently but are not activated until the
next IPL. Deferred fixes, if any, will be identified in the Firmware Update Descriptions table of
the firmware document. For deferred fixes within a service pack, only the fixes in the service
pack that cannot be concurrently activated are deferred. Table 4-1 shows the file-naming
convention for system firmware.
Table 4-1 Firmware naming convention
The following example uses the convention:
01AL770_032 = POWER7+ Entry Systems Firmware for 8231-E1D and 8231-E2D
PPNNSSS_FFF_DDD
PP Package identifier 01 -
02 -
NN Platform and class AL Low end
AM Mid range
AS Blade server
AH High end
AP Bulk power for IH
AB Bulk power for high end
SSS Release indicator
FFF Current fix pack
DDD Last disruptive fix pack

Chapter 4. Continuous availability and manageability
169
An installation is disruptive if the following statements are true:
The release levels (SSS) of currently installed and new firmware differ.
The service pack level (FFF) and the last disruptive service pack level (DDD) are equal in
new firmware.
Otherwise, an installation is concurrent if the service pack level (FFF) of the new firmware is
higher than the service pack level currently installed on the system and the conditions for
disruptive installation are not met.
4.4.3 Concurrent firmware update improvements with POWER7+
Since POWER6, firmware service packs are generally concurrently applied and take effect
immediately. Occasionally, a service pack is shipped where most of the features can be
concurrently applied; but because changes to some server functions (for example, changing
initialization values for chip controls) cannot occur during operation, a patch in this area
required a system reboot for activation.
With the Power-On Reset Engine (PORE), the firmware can now dynamically power off
processor components, make changes to the registers and re-initialize while the system is
running, without discernible impact to any applications running on a processor. This
potentially allows concurrent firmware changes in POWER7+, which in earlier designs,
required a reboot to take effect.
Activating some new firmware functions requires installation of a firmware release level. This
process is disruptive to server operations and requires a scheduled outage and full server
reboot.
4.4.4 Electronic Services and Electronic Service Agent
IBM transformed its delivery of hardware and software support services to help you achieve
higher system availability. Electronic Services is a web-enabled solution that offers an
exclusive, no-additional-charge enhancement to the service and support that is available for
IBM servers. These services provide the opportunity for greater system availability with faster
problem resolution and preemptive monitoring. The Electronic Services solution consists of
two separate, but complementary, elements:
Electronic Services news page
The Electronic Services news page is a single Internet entry point that replaces the
multiple entry points, which are traditionally used to access IBM Internet services and
support. With the news page, you can gain easier access to IBM resources for assistance
in resolving technical problems.
Electronic Service Agent
The Electronic Service Agent is software that resides on your server. It monitors events
and transmits system inventory information to IBM on a periodic, client-defined timetable.
The Electronic Service Agent automatically reports hardware problems to IBM.
Early knowledge about potential problems enables IBM to deliver proactive service that can
result in higher system availability and performance. In addition, information that is collected
Support for PowerLinux: The minimum firmware level 01AL770_032 will also be used on
the PowerLinux 7R1 (8246-L1D and 8246-L1T) and PowerLinux 7R2 (8246-L2D and
8246-L2T) systems.

170
IBM Power 710 and 730 Technical Overview and Introduction
through the Service Agent is made available to IBM service support representatives when
they help answer your questions or diagnose problems. Installation and use of IBM Electronic
Service Agent for problem reporting enables IBM to provide better support and service for
your IBM server.
To learn how Electronic Services can work for you, visit the following site; an IBM ID is
required:
http://www.ibm.com/support/electronic
Benefits are as follows:
Increased uptime
The Electronic Service Agent tool is designed to enhance the warranty or maintenance
agreement by providing faster hardware error reporting and uploading system information
to IBM Support. This way can translate to less wasted time monitoring the symptoms,
diagnosing the error, and manually calling IBM Support to open a problem record.
Its 24x7 monitoring and reporting mean no more dependence on human intervention or
off-hours customer personnel when errors are encountered in the middle of the night.
Security
The Electronic Service Agent tool is designed to be secure in monitoring, reporting, and
storing the data at IBM. The Electronic Service Agent tool securely transmits either with
the Internet (HTTPS or VPN) or modem, and can be configured to communicate securely
through gateways to provide customers a single point of exit from their site.
Communication is one way. Activating Electronic Service Agent does not enable IBM to
call into a customer's system. System inventory information is stored in a secure
database, which is protected behind IBM firewalls. It is viewable only by the customer and
IBM. The customer's business applications or business data is never transmitted to IBM.
More accurate reporting
Because system information and error logs are automatically uploaded to the IBM Support
center in conjunction with the service request, customers are not required to find and send
system information, decreasing the risk of misreported or misdiagnosed errors.
When inside IBM, problem error data is run through a data knowledge management
system and knowledge articles are appended to the problem record.
Customized support
By using the IBM ID that you enter during activation, you can view system and support
information by selecting My Systems at the Electronic Support website:
http://www.ibm.com/support/electronic
My Systems provides valuable reports of installed hardware and software, using
information collected from the systems by Electronic Service Agent. Reports are
available for any system associated with the customers IBM ID. Premium Search
combines the function of search and the value of Electronic Service Agent information,
providing advanced search of the technical support knowledge base. Using Premium
Search and the Electronic Service Agent information that was collected from your system,
your clients are able to see search results that apply specifically to their systems.
For more information about how to use the power of IBM Electronic Services, contact your
IBM Systems Services Representative, or visit the following website:
http://www.ibm.com/support/electronic

Chapter 4. Continuous availability and manageability
171
4.5 POWER7+ RAS features
This section lists POWER7+ RAS features in this release:
Power-On Reset Engine (PORE)
Enables a processor to be re-initialized while the system remains running. This feature will
allow for the concurrent firmware updates situation, in which a processor initialization
register value needs to be changed. Concurrent firmware updates might be more
prevalent.
L3 Cache dynamic column repair
This self-healing capability completes cache-line delete and uses the PORE feature to
potentially avoid some repair actions or outages that are related to L3 cache.
Accelerator RAS
New accelerators are designed with RAS features to avoid system outages in the vast
majority of faults that can be detected by the accelerators.
Fabric Bus Dynamic Lane Repair
POWER7+ has spare bit lanes that can dynamically be repaired (using PORE). This
feature avoids any repair action or outage related to a single bit failure for the fabric bus.
4.6 Power-On Reset Engine
The POWER7+ chip includes a Power-On Reset Engine (PORE), a programmable hardware
sequencer responsible for restoring the state of a powered down processor core and L2
cache (deep sleep mode), or chiplet (winkle mode). When a processor core wakes up from
sleep or winkle, the PORE fetches code created by the POWER Hypervisor from a special
location in memory containing the instructions and data necessary to restore the processor
core to a functional state. This memory image includes all the necessary boot and runtime
configuration data that were applied to this processor core since power-on, including circuit
calibration and cache repair registers that are unique to each processor core. Effectively the
PORE performs a mini initial program load (IPL) of the processor core or chiplet, completing
the sequence of operations necessary to restart instruction execution, such as removing
electrical and logical fences and reinitializing the Digital PLL clock source.
Because of its special ability to perform clocks-off and clocks-on sequencing of the hardware,
the PORE can also be used for RAS purposes:
The service processor can use the PORE to concurrently apply an initialization update to
a processor core/chiplet by loading new initialization values into memory and then forcing
it to go in and out of winkle mode. This step happens, all without causing disruption to the
workloads or operating system (all occurring in a few milliseconds).
In the same fashion, PORE can initiate an L3 cache dynamic “bit-line” repair operation if
the POWER Hypervisor detects too many recoverable errors in the cache.
The PORE can be used to dynamically repair node-to-node fabric bit lanes in a POWER7+
processor-based server by quickly suspending chip-chip traffic during run time,
reconfiguring the interface to use a spare bit lane, then resuming traffic, all without causing
disruption to the operation of the server.

172
IBM Power 710 and 730 Technical Overview and Introduction
4.7 Operating system support for RAS features
Table 4-2 gives an overview of features for continuous availability that are supported by the
various operating systems running on power systems. In the table, the word “Most” means
most functions.
Table 4-2 Operating system support for RAS features
RAS feature
AIX
5.3
AIX
6.1
AIX
7.1
IBM i
RHEL
5.7
RHEL
6.3
SLES11
SP2
System deallocation of failing components
Processor Fabric Bus Protection X X X X X X X
Dynamic Processor Deallocation X X X X X X X
Dynamic Processor Sparing X X X X X X X
Processor Instruction Retry X X X X X X X
Alternate Processor Recovery X X X X X X X
Partition Contained Checkstop X X X X X X X
Persistent processor deallocation X X X X X X X
GX++ bus persistent deallocation X X X X - - X
Optional ECC I/O hub with freeze behavior X X X X X X X
PCI bus extended error detection X X X X X X X
PCI bus extended error recovery X X X X Most Most Most
PCI-PCI bridge Enhanced Error Handling X X X X - - -
Redundant RIO or 12x Channel link
a
X X X X X X X
PCI card hot-swap X X X X X X X
Dynamic SP failover at run time
b
X X X X X X X
Memory sparing with CoD at IPL time X X X X X X X
Clock failover run time or IPL
b
X X X X X X X
Memory availability
ECC memory, L2, L3 cache X X X X X X X
CRC plus retry on memory data bus X X X X X X X
Data Bus X X X X X X X
Dynamic memory channel repair X X X X X X X
Processor memory controller memory scrubbing X X X X X X X
Memory page deallocation X X X X X X X
Chipkill memory X X X X X X X
L1 instruction and data array protection X X X X X X X
L2/L3 ECC and cache line delete X X X X X X X

Chapter 4. Continuous availability and manageability
173
Special uncorrectable error handling X X X X X X X
Active Memory Mirroring for Hypervisor
b
X X X X X X X
Fault detection and isolation
Platform FFDC diagnostics X X X X X X X
Run-time diagnostics X X X X Most Most Most
Storage Protection Keys - X X X - - -
Dynamic Trace X X X X - - X
Operating System FFDC - X X X - - -
Error log analysis X X X X X X X
Freeze mode of I/O Hub X X X X - - -
Service processor support for:
Built-in self-tests (BIST) for logic and arrays X X X X X X X
Wire tests X X X X X X X
Component initialization X X X X X X X
Serviceability
Boot-time progress indicators X X X X Most Most Most
Electronic Service Agent Call Home from
management console
X X X X X X X
Firmware error codes X X X X X X X
Operating system error codes X X X X Most Most Most
Inventory collection X X X X X X X
Environmental and power warnings X X X X X X X
Hot-plug fans, power supplies X X X X X X X
Extended error data collection X X X X X X X
I/O drawer redundant connections
a
X X X X X X X
I/O drawer hot add and concurrent repair
a
X X X X X X X
HOT GX adapter add and repair
b
X X X X X X X
Concurrent add of powered I/O rack
a
X X X X X X X
SP mutual surveillance with POWER Hypervisor X X X X X X X
Dynamic firmware update with management
console
X X X X X X X
PORE: Core Inizialization without reboot X X X X X X X
Service processor support for BIST X X X X X X X
Electronic Service Agent Call Home Application X X X X - - -
RAS feature
AIX
5.3
AIX
6.1
AIX
7.1
IBM i
RHEL
5.7
RHEL
6.3
SLES11
SP2

174
IBM Power 710 and 730 Technical Overview and Introduction
Guiding light LEDs X X X X X X X
System dump for memory, POWER Hypervisor,
SP
X X X X X X X
Information center / Systems Support Site service
publications
X X X X X X X
System Support Site education X X X X X X X
Operating system error reporting to management
console SFP
X X X X X X X
RMC secure error transmission subsystem X X X X X X X
Health check scheduled operations with
management console
X X X X X X X
Operator panel (real or virtual) X X X X X X X
Concurrent operator panel maintenance
b
X X X X X X X
Redundant management consoles X X X X X X X
Automated server recovery/restart X X X X X X X
PowerVM Live Partition Mobility X X X X X X X
Live Application Mobility - X X - - - -
Repair and Verify Guided Maintenance X X X X Most Most Most
Concurrent kernel update - X X X X X X
Concurrent Hot Add/Repair Maintenance X X X X X X X
Power and cooling
Redundant, hot swap fans and blower for CEC X X X X X X X
Redundant, hot swap power for CEC X X X X X X X
TPMD for system power and thermal management X X X X X X X
CEC power/thermal sensor (CPU and memory) X X X X X X X
Redundant power for I/O drawers
a
X X X X X X X
a. Not available on Power 710 and Power 730.
b. Need mid-tier and large-tier POWER7 systems or later, including Power 770, 780, and 795.
RAS feature
AIX
5.3
AIX
6.1
AIX
7.1
IBM i
RHEL
5.7
RHEL
6.3
SLES11
SP2

© Copyright IBM Corp. 2013. All rights reserved.
175
Related publications
The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.
IBM Redbooks
The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.
An Introduction to Fibre Channel over Ethernet, and Fibre Channel over Convergence
Enhanced Ethernet, REDP-4493
IBM BladeCenter PS700, PS701, and PS702 Technical Overview and Introduction,
REDP-4655
IBM BladeCenter PS703 and PS704 Technical Overview and Introduction, REDP-4744
IBM Power 720 and 740 (8202-E4D, 8205-E6D) Technical Overview and Introduction,
REDP-4984
IBM Power 750 and 760 (8408-E8D, 9109-RMD) Technical Overview and Introduction,
REDP-4985
IBM Power 750 and 755 (8233-E8B, 8236-E8C) Technical Overview and Introduction,
REDP-4638
IBM Power 770 and 780 (9117-MMD, 9179-MHD) Technical Overview and Introduction,
REDP-4798
IBM Power 795 (9119-FHB) Technical Overview and Introduction, REDP-4640
IBM Power Systems HMC Implementation and Usage Guide, SG24-7491
IBM Power Systems: SDMC to HMC Migration Guide (RAID1), REDP-4872
IBM PowerVM Virtualization Introduction and Configuration, SG24-7940
IBM PowerVM Virtualization Managing and Monitoring, SG24-7590
IBM PowerVM Best Practices, SG24-8062
IBM PowerVM Live Partition Mobility, SG24-7460
IBM Systems Director 6.3 Best Practices: Installation & Configuration, REDP-4932
PowerVM Migration from Physical to Virtual Storage, SG24-7825
PowerVM and SAN Copy Services, REDP-4610
You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:
ibm.com/redbooks

176
IBM Power 710 and 730 Technical Overview and Introduction
Other publications
These publications are also relevant as further information sources:
IBM Power Facts and Features: IBM Power Systems, IBM PureFlex and Power Blades
http://www.ibm.com/systems/power/hardware/reports/factsfeatures.html
Specific storage devices supported for Virtual I/O Server
http://www14.software.ibm.com/webapp/set2/sas/f/vios/documentation/datasheet.html
IBM Power 710 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03048usen/POD03048USEN.PDF
IBM Power 720 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03049usen/POD03049USEN.PDF
IBM Power 730 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03050usen/POD03050USEN.PDF
IBM Power 740 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03051usen/POD03051USEN.PDF
IBM Power 750 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03034usen/POD03034USEN.PDF
IBM Power 755 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03035usen/POD03035USEN.PDF
IBM Power 760 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03080usen/POD03080USEN.PDF
IBM Power 770 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03031usen/POD03031USEN.PDF
IBM Power 780 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03032usen/POD03032USEN.PDF
IBM Power 795 server data sheet
http://public.dhe.ibm.com/common/ssi/ecm/en/pod03053usen/POD03053USEN.PDF
Active Memory Expansion: Overview and Usage Guide
http://public.dhe.ibm.com/common/ssi/ecm/en/pow03037usen/POW03037USEN.PDF
POWER7 System RAS Key Aspects of Power Systems Reliability, Availability, and
Serviceability
http://public.dhe.ibm.com/common/ssi/ecm/en/pow03056usen/POW03056USEN.PDF

Related publications
177
Online resources
These websites are also relevant as further information sources:
IBM Power Systems Hardware Information Center
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp
IBM System Planning Tool website
http://www.ibm.com/systems/support/tools/systemplanningtool/
IBM Fix Central website
http://www.ibm.com/support/fixcentral/
Power Systems Capacity on Demand website
http://www.ibm.com/systems/power/hardware/cod/
Support for IBM Systems website
http://www.ibm.com/support/entry/portal/Overview?brandind=Hardware~Systems~Power
IBM Power Systems website
http://www.ibm.com/systems/power/
IBM Storage website
http://www.ibm.com/systems/storage/
IBM Systems Energy Estimator
http://www-912.ibm.com/see/EnergyEstimator/
Migration combinations of processor compatibility modes for active Partition Mobility
http://publib.boulder.ibm.com/infocenter/powersys/v3r1m5/topic/p7hc3/iphc3pcmco
mbosact.htm
Advance Toolchain:
http://ibm.co/106nMYI
Help from IBM
IBM Support and downloads
ibm.com/support
IBM Global Services
ibm.com/services

178
IBM Power 710 and 730 Technical Overview and Introduction


®
REDP-4983-00
INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION
BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE
IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.
For more information:
ibm.com/redbooks
Redpaper

IBM Power 710 and 730
Technical Overview and
Introduction
Features 8231-E1D,
8231-E2D, 8246
PowerLinux servers
based on POWER7+
processor technology
Describes the support
of 20 partitions per
core
Explains 2U
rack-mount design
for leading
performance
This IBM Redpaper publication is a comprehensive guide covering the
IBM Power 710 (8231-E1D) and Power 730 (8231-E2D) servers that
support IBM AIX, IBM i, and Linux operating systems. This paper also
describes the IBM PowerLinux 7R1 (8246-L1D and 8246-L1T) and the
PowerLinux 7R2 (8246-L2D and 8246-L2T) servers that support the
Linux operating system. The goal of this paper is to introduce the
innovative Power 710, Power 730, PowerLinux 7R1, and PowerLinux
offerings and their major functions:
IBM POWER7+ processor is available at frequencies of 3.6 GHz,
4.2 GHz, and 4.3 GHz.
Larger IBM POWER7+ Level 3 cache provides greater bandwidth,
capacity, and reliability.
Integrated SAS/SATA controller for HDD, SSD, tape, and DVD
supports built-in hardware RAID 0, 1, and 10.
New IBM PowerVM V2.2.2 features, such as 20 LPARs per core.
Improved IBM Active Memory Expansion technology provides more
usable memory than is physically installed in the system.
Professionals who want to acquire a better understanding of IBM
Power Systems products can benefit from reading this paper.
This paper expands the current set of IBM Power Systems
documentation by providing a desktop reference that offers a detailed
technical description of the Power 710 and Power 730 systems.
This paper does not replace the latest marketing materials and
configuration tools. It is intended as an additional source of information
that, together with existing sources, can be used to enhance your
knowledge of IBM server solutions.
Back cover
First page image
We are pleased to offer a download of this document free of charge.
Files available for download:
  • a representative PDF of the primary file (contains all the relevant information for most users)
To obtain the file, please enter the "captcha" below and click the Download button.
Avoid entering CAPTCHAs! Sign In or Create a Free Account.

Challenge image
  • Please enter letters and numbers only; no spaces.
  • Cannot read this one? Click the image.
  • Difficulty with captchas? Contact us with the URL of this page and we will email it to you.